10 см
Объяснение:
Дано: ΔАВС - прямоугольный, ∠С=90°, ВD - медиана, BD=2√13 cм, АС=8 см. АВ - ?
Если в условии дана медиана треугольника, я решаю задачу, достроив треугольник до параллелограмма. Теорема об удвоении медианы:
Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.
Продлеваем медиану на такую же длину и строим параллелограмм АВСК, где диагональ АС=8 см, диагональ ВК=2√13+2√13=4√13 см.
Тогда АС²+ВК²=2(АВ²+ВС²).
208+64=2(АВ²+ВС²)
272=2(АВ²+ВС²)
АВ²+ВС²=136.
Вернемся к ΔАВС. По теореме Пифагора
АВ²+ВС²=136
АВ²-ВС²=64 (т.е. АС²)
2АВ² = 200; АВ²=100; АВ=10 см.
Объяснение:
1) Рассмотрим ΔАСО и ΔFDO.
∠CAO=∠ DFO - по условию,
AO=FO - по условию,
∠СОА = ∠DOF - как вертикальные.
⇒ΔАСО = ΔFDO по стороне и двум прилежащим к ней углам ( ІІ признак равенства треугольников)
Из Равенства треугольников следует равенство сторон: СО=DO
2) Рассмотрим ΔCBO и ΔDEO.
CB=DE и BO=EO - по условию, СО=DO - по доказанному выше.
⇒ΔCBO = ΔDEO по трём сторонам (ІІІ признак равенства треугольников)
Из равенства треугольников следует равенство углов: ∠CВO=∠DЕO,
что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
1)лежит ли точка a (2; -1) на прямой, заданной уравнением 2x-3y-7=0? 2)напишите уравнение прямой, проходящей через точку n (-2; 3) и параллельной оси абсцисс. 3)напишите уравнение прямой, проходящей через начало координат и точку d (3; -2) 4)напишите уравнение окружности с центром в точке p(-2; -1), если она проходит через точку q(1; 3) 5)найдите расстояние между точками a(-1; 3) и b(2; -1)
4+3-7=0
0=0
тк равенство верно, то точа А лежит на этой прямой
2) тк прямая паралельна оси Ох (абсцисс), то прямая имеет вид у=к
и именно прямая у=3 будет проходить через точку N
3) уравнение прямой - у=кх+б
у нас имеется 2 точки - О(0;0) и D(3;-2)
подставим координаты в это уравнения и у нс получится система:
0=б
-2=3к+б
б=0 и к=-2\3
наша прямая имеет уравнение у=-2\3х
4) уравнение окружности : (х-х0)^2 + (у-у0)^2 =R^2
центр окружности Р(-2;-1), подставим ее координаты в уравнение
(х+2)^2+(у+1)^2=R^2
теперь осталось найти радиус
найдем длину вектора PQ:
PQ{3;4}, |PQ|=корень из(3^2+4^2)=5
именно длина вектора PQ для нас является длиной радиуса окружности
конечный вид уравнения окружности:
(х+2)^2+(у+1)^2=25
5) Найдем длину вектора АВ
АВ{3;4} (АВ в модуле - длина вектора) |АВ|=корень из(3^2+4^2)= 5
длина между точками А и В = 5