8
Объяснение: Длины сторон
sqrt(17) , sqrt(41), 4 (корень квадратный из суммы квадратов разностей координат). И дальше по формуле Герона.
А можно как в начальной школе по клеточкам.
Взять еще точку С(5,0). Площадь ОВД равна 4*5/2=10
Площадь ОВС=1*4/2
Искомая площадь 10-2=8
ответ : 8. Интересно получить то же по формуле Герона.
Примечание : есть еще формула
S=|(х1-х3)*(у2-у3)-(х2-х3)*(у1-у3)|/2
Легко видеть, что по этой формуле ответ тот же.
Найди площадь круга, вписанного в равнобедренную трапецию с основаниями длиной 6 см и 12 см и периметром 36 см
Объяснение:
АВСМ- описанная трапеция⇒ суммы длин противоположных сторон равны. Т.е 6+12=АВ+СМ⇒ АВ=СМ=9 см. Пусть ВК⊥АМ , СР⊥АМ.
S(круга)=πr². Радиус вписанной в трапецию окружности будет равен половине высоты трапеции.
Т.к. ВК⊥АМ , СР⊥АМ, то КВСР-прямоугольник ⇒
КР=6 см, АК=РМ=(12-6) :2=3 (см).
ΔАВК-прямоугольный, по т. Пифагора :
ВК=√(9²-3²)=√((9-3)(9+3))=√(6*12)=6√2(см).
ВК-высота трапеции, значит r=3√2 см.
S(круга)= π (3√2 )²=18π (см²).
Подробнее - на -
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.
Поделитесь своими знаниями, ответьте на вопрос:
Точки о(0; 0), a(4; 1) и b(4; 5) являются вершинами треугольника oab. как найти площадь треугоника?
ответ: 8 (ед.кв.)
Объяснение: по формуле Герона на самом деле не так сложно, как кажется... иррациональные множители постоянно "попадают" в формулу разность квадратов...
полупериметр =(V17+V41+4)/2
(напишу квадрат площади, т.к. с телефона нет возможности ввести формулы)
S^2=(V17+V41+4)*0.5*(V41+4-V17)*0.5*(V17+4-V41)*0.5*(V17+V41-4)*0.5 =
= (0.5)^4*((V41+4)^2-17)*(17+V(17*41)-4V17 + 4V17+4V41-16 - V(17*41)-41+4V41 =
= (0.5)^4*(41+8V41+16-17)*(8V41-40) =
= (0.5)^4*8^2*(V41-5)*(V41+5) =
= (64/16)*(41-25) = 4*16
S = 2*4 = 8
а если нарисовать треугольник на плоскости в системе координат, то очевидно, что сторона треугольника АВ=4, высота к этой стороне =4, площадь равна половине произведения стороны на высоту, проведенную к этой стороне = 4*4/2 = 8