ответ: x+y-9=0.
Объяснение:
Для того, чтобы все точки прямой a*x+b*y+c*=0 находились на равном расстоянии от точек А и В, эта прямая должна быть перпендикулярна прямой АВ и проходить через середину отрезка АВ. Пусть точка С - точка пересечения данных прямых; найдём её координаты:
Xc=(Xa+Xb)/2=3; Yc=(Ya+Yb)/2=6. Составим теперь уравнение прямой АВ:
(x-Xa)/(Xb-Xa)=(y-Ya)/(Yb-Ya), или (x-1)/4=(y-4)/4, или y=x+3. Отсюда следует, что угловой коэффициент k1 данной прямой равен k1=1. А так прямая a*x+b*y*c=0 перпендикулярна прямой АВ, то её угловой коэффициент k2=-1/k1=-1. Теперь составим уравнение прямой a*x+b*y*c=0: y-Yc=k2*(x-Xc), или y-6=-1*(x-3), или x+y-9=0.
Поделитесь своими знаниями, ответьте на вопрос:
AC:BC=AS:BS=5:12 по св-м биссектрисыAC=5x, BC=12x
Теорема ПифагораAC^2 + BC^2 = AB225X^2 + 144X^2 = 169
x=1смAC=5x=5смBC=12x=12 см
SABC= AC*BC/2= 5*12/2=30СМ