Оскільки вектори не містять компонентів, які дорівнюють нулю, то скористаємось другою умовою колінеарності: 2 вектори колінеарні, якщо відношення їх координат рівні (ax\bx = ay\by)
Підставимо координати наших векторів:
n\6=-2\ -3n
n= 6*(-2)\-3n=-12\-3n=4\n=√4=2 і -2
Перевіримо, використавши ту ж другу умови колінеарності (ax\bx = ay\by):
- якщо n=2
2\6=1\3
-2\-3*2=1\3
- якщо n= -2
-2\6= -1\3
-2\-3*(-2)=-2\6= -1\3
Отож, вектори а(n;-2) і b(6;-3n) колінеарні, якщо n=2 і -2
ainud
23.02.2023
Теорема . три высоты любого треугольника пересекаются в одной точке. доказательство: пусть abc - данный треугольник . пусть прямые, содержащие высоты ap и bq треугольника abc пересекаются в точке o. проведем через точку a прямую, параллельную отрезку bc, через точку b прямую, параллельную отрезку ac, а через точку c - прямую, параллельную отрезку ab. все эти прямые попарно пересекаются. пусть точка пересечения прямых, параллельных сторонам ac и bc - точка m, точка пересечения прямых, параллельных сторонам ab и bc - точка l, а прямых, параллельным ab и ac - точка k. точки klm не лежат на одной прямой, (иначе бы прямая ml совпадала бы с прямой mk, а значит, прямая bc была бы параллельна прямой ac, или совпадала бы с ней, то есть точки a, b и c лежали бы на одной прямой, что противоречит определению треугольника) . итак, точки k, l, m составляют треугольник. ma параллельно bc, и mb параллельно ac по построению. а значит, четырёхугольник macb - параллелограмм. следовательно, ma = bc, mb = ac. аналогично al = bc = ma, bk = ac = mb, kc = ab = cl. значит, ap и bq - серединные перпендикуляры к сторонам треугольника klm. они пересекаются в точке o, а значит, co - тоже срединный перпендикуляр. co перпендикулярно kl, kl параллельно ab, а значит co перпендикулярно ab. пусть r - точка пересечения ab и cq. тогда cr перпендикулярно ab, то есть cr - это высота треугольника abc. точка o принадлежит всем прямым, содержащим высоты треугольника abc. значит, прямые, содержащие высоты этого треугольника пересекаются в одной точке. что и требовалось доказать. может правильно )
Serdechnaya636
23.02.2023
Чертеж не обязателен. а)1 случай. 40°-угол при вершине,значит углы при основании равны по (180°-40°)÷2=70° ответ:40°;70°;70°. 2 случай. 40°-один из углов при основании,углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(40°×2)=100° ответ:40°;40°;100°. б) 1 случай. 60°-угол при вершине,значит каждый угол при основании равен (180°-60°)÷2=60° ответ:60°;60°;60°. 2 случай. 60°- угол при основании,а углы при основании равнобедренного треугольника равны,значит угол при вершине равен 180°-(60°×2)=60° ответ:60°;60°;60°. в) один случай 100°-угол при вершине,значит каждый угол при основании равен (180°-100°)÷2=40° ответ:100°;40°;40°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Визначте, при яких значеннях n вектори а(n; -2) і b(6; -3n) колінеарні
Відповідь:
Оскільки вектори не містять компонентів, які дорівнюють нулю, то скористаємось другою умовою колінеарності: 2 вектори колінеарні, якщо відношення їх координат рівні (ax\bx = ay\by)
Підставимо координати наших векторів:
n\6=-2\ -3n
n= 6*(-2)\-3n=-12\-3n=4\n=√4=2 і -2
Перевіримо, використавши ту ж другу умови колінеарності (ax\bx = ay\by):
- якщо n=2
2\6=1\3
-2\-3*2=1\3
- якщо n= -2
-2\6= -1\3
-2\-3*(-2)=-2\6= -1\3
Отож, вектори а(n;-2) і b(6;-3n) колінеарні, якщо n=2 і -2