konstantin0112
?>

На боковых сторонах равнобедренного треугольника авc отложены равные отрезки вм и вр . на основании ас отмечена точка ктак, что мк=кр . докажите, что треуголник мвк=треугольнику рвк. и черчёж тоже надо сделать ((

Геометрия

Ответы

Дружинин
МК=KP, BM=BP по условию; BK - общая сторона; значит треугольники равны по 3-му признаку равенства треугольников

На боковых сторонах равнобедренного треугольника авc отложены равные отрезки вм и вр . на основании
Svetlana395
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав
gassvetlana
Дано:
НABCD  - пирамида
ABCD - прямоугольник
AB=CD=10см
AD=ВС=18см
НO - высота
НO=12cм
S(бок)-?
S(полн)-?

Решение:
S(бок)=S(AНB)+S(BНC)+S(CНD)+S(AНD). Так как треугольники AНB и CНD, а также BНC и AНD попарно равны, то S(бок)=2S(BНC)+2S(CНD).
S(BHC)= \frac{1}{2} \cdot BC \cdot HK, где НК - высота, проведенная к стороне ВС. НК можно найти как гипотенузу прямоугольного треугольника НОК, где ОК - половина стороны СD.
HK= \sqrt{HO^2+OK^2} =\sqrt{12^2+( \frac{10}{2} )^2} =13(sm).
Аналогично, S(CHD)= \frac{1}{2} \cdot CD \cdot HN, где НN - высота, проведенная к стороне СD.
HN= \sqrt{HO^2+ON^2} =\sqrt{12^2+( \frac{18}{2} )^2} =15(sm)
Получаем:
S_{bok}=2S(BHC)+2S(CHD)=2\cdot \frac{1}{2} \cdot BC \cdot HK+2\cdot \frac{1}{2} \cdot CD \cdot HN=
\\\
=BC \cdot HK+CD \cdot HN=18\cdot 13+10\cdot 15=384(sm^2)
Площадь полной поверхности равна сумме площади боковой поверхности и площади основания:
S_{poln}=S_{bok}+S_{osn}=S_{bok}+AD\cdot DC=384+18\cdot10=564(sm^2)
ответ: 384см²; 564см²
Основанием пирамиды является прямоугольник со сторонами 18 см и 10 см.основанием высоты пирамиды,рав

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

На боковых сторонах равнобедренного треугольника авc отложены равные отрезки вм и вр . на основании ас отмечена точка ктак, что мк=кр . докажите, что треуголник мвк=треугольнику рвк. и черчёж тоже надо сделать ((
Ваше имя (никнейм)*
Email*
Комментарий*