swetlanafatinia7323
?>

1. в основе прямой призмы лежит равнобедренный треугольник с боковой стороной b и углом при вершине β. диагональ грани, содержащей боковую сторону треугольника , образует с плоскостью угол φ. найти объем призмы. 2. в основе пирамиды лежит равнобедренный треугольник с основой 12 см и углом при вершине 120° .все боковые ребра пирамиды образуют с ее высотой угол 60°. найти объем пирамиды.

Геометрия

Ответы

rubanvladimir374
1.
h=b*tg(φ)
S=b*b*sin(β)/2 - площадь основания
V=h*S=b^3*tg(φ)*sin(β)/2
2.
Все боковые ребра пирамиды образуют с ее высотой одинаковый угол и значит боковые ребра равны и значит проекции ребер равны, значит проекция вершины пирамиды лежит в центре описанной окружности около треугольника основания.
для равнобедренного треугольника с основанием а=12 см и углом при вершине 120° радиус описанной окружности R=a/корень(3),
(надо рисовать круг, в нем треугольник, вычислять ... я это сделал на черновике)
высота пирамиды
h = R*tg(30)=a/3=4 см
S=2*(a/2)*(a/2)*tg(30)/2 =   a^2*корень(3)/12 =  12*корень(3) см^2
V = S*h/3 =12*корень(3)*4/3=16*корень(3) см^3
zdanovich90764
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc
hrviko
1.
ΔMDN подобен ΔADB по двум пропорциональным сторонам и углу между ними (DM:MA = DN:NB = 2:1, ∠D - общий)
⇒ MN:AB = 2:3, ∠DMN = DAB. Эти углы соответственные при пересечении прямых MN и АВ секущей DA, ⇒ MN║AB.

ΔNDP подобен ΔBDC по двум пропорциональным сторонам и углу между ними (DN:NB = DP:PC = 2:1, ∠D - общий)
⇒ NP:BC = 2:3, ∠DNP = ∠DBC. Эти углы соответственные при пересечении прямых РN и СВ секущей DВ, ⇒ РN║СB.

ΔDMP подобен ΔDAC по двум пропорциональным сторонам и углу между ними (DM:MA = DP:PC = 2:1, ∠D - общий)
⇒ MP:AC = 2:3.

MN║AB и РN║СB ⇒ плоскость MNP параллельна плоскости АВС.

MN:AB = NP:BC = MP:AC = 2:3 ⇒ ΔMNP подобен ΔАВС по трем пропорциональным сторонам.
Smnp:Sabc = 4:9
Smnp = 4Sabc/9 = 40/9 см² = 4 целых и 4/9 см²

2.
ABCDA₁B₁C₁D₁ - параллелепипед.
Точки M и N принадлежат плоскости (АВС) ⇒ проводим прямую MN.
MN - отрезок сечения.
MN∩AD = X,  MN∩DC = Y

Точки К и X принадлежат плоскости ADD₁. Проводим прямую KX.
KX∩AA₁ = L
KL  и LM - отрезки сечения.

Точки К и Y принадлежат плоскости CDD₁. Проводим прямую KY.
KY∩CC₁ = O.
КО и ON - отрезки сечения.

KONML - искомое сечение.

Нужно! 1) на ребрах da, db и dc тэтраэдра dabc отмечены точки m, n и p так, что dm: ma=dn: nb=dp: pc

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. в основе прямой призмы лежит равнобедренный треугольник с боковой стороной b и углом при вершине β. диагональ грани, содержащей боковую сторону треугольника , образует с плоскостью угол φ. найти объем призмы. 2. в основе пирамиды лежит равнобедренный треугольник с основой 12 см и углом при вершине 120° .все боковые ребра пирамиды образуют с ее высотой угол 60°. найти объем пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*