Пусть ВЕ- расстояние между большими сторонами или высота опущенная на сторону СД. ВК расстояние между меньшими сторонами или высота опущенная на сторону АД. найдем площадь параллелограмма S=BE·CD. S=4·6=24см^2. теперь из формулы S=BK·AD. вычислим ВК=24:8=3см ответ: 3 см.
kadrevproduction
13.07.2021
Точка О2 - центр вписанной окружности в тр-ник АВС. Точка О1 - центр заданной окружности. Около тр-ка АВС опишем окружность. АО2, ВО2 и СО2 - биссектрисы соответствующих углов. Продолжим отрезок СО2 до пересечения его с описанной окружностью в некой точке К. ∠АО2К=∠А/2+∠С/2, т.к. ∠АО2К является внешним к тр-ку АСО2. ∠ВАК=АВК=∠С/2, т.к. оба опираются на те же дуги, на которые опираются равные углы из вершины тр-ка АВС. КА=КВ по этой же причине. Заметим, что в тр-ке АКО2 ∠КАО2=∠АО2К, значит он равнобедренный. КА=КО2=КВ, значит точка К - центр описанной около тр-ка АВО2 окружности. Тр-ник АВС - равнобедренный. В нём СМ - биссектриса и высота. В прямоугольном тр-ке АСМ ∠А+∠С=90°. Заметим, что и в тр-ке АСК ∠САК=90°, значит ∠CВК=90°. СА и CВ - касательные к окружности с центром в точке К. Точки А и В лежат на этой окружности. Но СА и CВ - касательные к заданной окружности, значит точки К и О1 совпадают. О1О2 - радиус заданной окружности, значит центр вписанной в тр-ник АВС окружности лежит на данной окружности. Доказано.
sbn07373
13.07.2021
Высота, проведенная к основанию равнобедренного треугольника, является так же и медианой. Зная это по теореме Пифагора найдем боковое ребро данного треугольника: АС= √(АD^2+(AB/2)^2)= √(3^2+4^2)= √(9+16)= √25=5 см
Радиус окружности описанной около равнобедренного треугольника: R=a^2/√((2a)^2-b^2)) (где a – боковое ребро b – основание треугольника) R=5^2/ √((2*5)^2-8^2)=25/ √(100-64)=25/ √36=25/6=4 1/6 см
Радиус окружности вписанной в равнобедренный треугольник: r=(b/2)* √((2a-b)/(2a+b)) r=(8/2)* √((2*5-8)/(2*5+8))=4 √(2/18)=4/3=1 1/3 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Стороны параллелограмма равны 8 и 4 см, расстояние между большими сторонами - 6 см.вычислить расстояние между меньшими сторонами.
найдем площадь параллелограмма
S=BE·CD. S=4·6=24см^2.
теперь из формулы S=BK·AD. вычислим ВК=24:8=3см
ответ: 3 см.