В треугольнике АСЕ АС - диагональ квадрата в основании, и
АС^2 = 2; (длина ребра куба принята за 1)
АЕ = СЕ,
и
АЕ^2 = AD^2 + DE^2 = 1 + (1/3)^2 = 10/9;
Если обозначить косинус угла АЕС (который и надо найти) за х, то
по теореме косинусов для треугольника АЕС
АС^2 = AE^2 + CE^2 - 2*AE*CE*x = 2*AE^2*(1 - x);
2 = 2*(10/9)*(1 - x);
x = 1/9;
Я добавлю глубокомысленное замечание.
Обратите внимание на технику решения - я не записал по ходу ни одного корня. Это, конечно, мелочь, но именно в таких мелочах и путаются обычно.
Не могут, докажем это.
Допустим, что они пересекаются в точке О.
Через точки К, О, Р можно по аксиоме провести плоскость и притом только одну. Пусть это плоскость alpha.
По аксиоме: если две точки прямой лежат в плоскости, то и вся прямая лежит в этой плоскости.
Для прямой КМ: K принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой KM, значит две точки прямой КМ принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой KM, в частности, точка M принадлежит alpha.
Для прямой PT: P принадлежит alpha, O принадлежит alpha и в то же время принадлежит прямой PT, значит две точки прямой PT принадлежат плоскости alpha, значит и вся прямая принадлежит плоскости alpha, значит любая точка прямой PT, в частности, точка T принадлежит alpha.
В итоге получили, что точки K,M,P,T принадлежат плоскости alpha, получаем противоречие с условием.
Значит прямые KM и PT не пересекаются.
Поделитесь своими знаниями, ответьте на вопрос:
Если два равнобедренных треугольника имеют общую сторону и общий угол, то они равны между собой?