Владислав-Аветисян217
?>

Втреугольнике abc ab=4 см, ac=10 см. биссектриса внешнего угла при вершине a пересекает луч cb в точке d так, что bd=6см. найдите сторону bc.

Геометрия

Ответы

tokarevaiv
На продолжении отрезка CA за точку А выберем точку B' так, что AB'=AB=4. Т.к. AD - биссектриса угла BAB', то треугольники BAD и B'AD равны по двум сторонам и углу между ними, т.е. DA - биссектриса треугольника B'DC. По свойству биссектрисы B'D/CD=АB'/AC, т.е. 6/(6+BC)=4/10, откуда BC=9.
elenaperemena8
Стона тр-ка равна а=Р/3=24/3=8см.
Радиус описанной окружности около правильного тр-ка рассчитывается по формуле: R=(a√3)/3=(8√3)/3см.
Пусть сторона пятиугольника равна х.
Правильный пятиугольник состоит из пяти равнобедренных тр-ков с основанием х, которые, в свою очередь делятся высотой, опущенной из центра на основание х, на два прямоугольных треугольника.
Рассмотрим один такой тр-ник. У него гипотенуза R, один из катетов х/2, а угол, напротив этого катета - центральный, равен: ∠О=360/10=36°
sin36=(х/2)/R,
x=2Rsin36=(16sin36·√3)/3≈5.43см.
Дмитрий Бундин
1. Рассмотрим осевое сечение конуса - треугольник АВС, он правильный. У правильного треугольника высота опущенная из точки В на сторону АС будет его медианой и биссектрисой. А если так то угол АВД=углу ДВС. Угол АВД = 30 градусов.
2. Рассмотрим треугольник ВБС. Угол Д равен 90 градусов, потому что ВД высота. Треугольник ВБС прямоугольный. За теоремой косинусов находим сторону треугольника АВС.
cos углаДВС=ВД/ВС. ВС=ВД/cos углаДБС.
3. Площадь треугольника равна половине площади прямоугольника.
S=(АС*ВД)/2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Втреугольнике abc ab=4 см, ac=10 см. биссектриса внешнего угла при вершине a пересекает луч cb в точке d так, что bd=6см. найдите сторону bc.
Ваше имя (никнейм)*
Email*
Комментарий*