Пусть дан прямоугольный треугольник АВС с прямым углом А, тогда
высота прямоугольного треугольника ВН, проведённая к гипотенузе ВС, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. АН = корню квадратному из ВН*НС=12 (см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225, ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат, ВС=ВН+НС=9+16=25 (см)
АС квадрат = 25 в квадрате-15 в квадрате
АС квадрат=625-225=400
АС=корень квадратный из 400=20 (см)
ответ: 20 см и 15 см
Пусть дан прямоугольный треугольник АВС с прямым углом А, тогда
высота прямоугольного треугольника ВН, проведённая к гипотенузе ВС, есть среднее пропорциональное между проекциями катетов на гипотенузу, т. е. АН = корню квадратному из ВН*НС=12 (см)
тогда рассмотрим треугольник ВАН (прямоугольный, с прямым углом ВНА), и по теореме Пифагора получаем, что ВА в квадрате=ВНквадрат+НАквадрат
ВА квадрат=9 в квадрате+12 в квадрате, ВА квадрат=81+144=225=>
ВА=корень квадратный из 225, ВА=15 (см_)
тогда берём первоначальный треугольник АВС и по теореме Пифагора находим катет АС,
АС квадрат=ВС квадрат-ВА квадрат, ВС=ВН+НС=9+16=25 (см)
АС квадрат = 25 в квадрате-15 в квадрате
АС квадрат=625-225=400
АС=корень квадратный из 400=20 (см)
ответ: 20 см и 15 см
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике doc, угол d - прямой, точка в делит сторону оd на отрезки db = 5 см, ов = 9 см. из точки в опущен перпендикуляр к стороне ос. докажите, что треугольник оав и треугольник ocd подобны и найдите cd, если оа=6см, ас=15см.
углы ОАВ и ОДС - прямые (по двум углам)
ОС=21, составим пропорцию АВ/СД=ОВ/ОС;
из тр.ОВА по т. Пифагора находим АВ =3кв.корня из 5;
СД=7кв.корней из 5