galinaobraz
?>

Впрямом параллелепипеде стороны основания равны m и n , один из углов основания равен 60 грудусам . найдите боковую поверхность параллелепипеда , если большая диоганаль основания равна меньшей диогонали параллелепида

Геометрия

Ответы

char40
Решение в приложении.

Впрямом параллелепипеде стороны основания равны m и n , один из углов основания равен 60 грудусам .
Valerevna Tuzova
Ра́диус (лат. radius — спица колеса, луч) — отрезок, соединяющий центр окружности (или сферы) с любой точкой, лежащей на окружности (или поверхности сферы), а также длина этого отрезка.
Окру́жность — замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.
Диаметр окружности является хордой, проходящей через её центр; такая хорда имеет максимальную длину.
Хо́рда — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Круг – множество точек плоскости, удаленных от заданной точки этой плоскости на расстояние, не превышающее заданное (радиус круга).
German
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впрямом параллелепипеде стороны основания равны m и n , один из углов основания равен 60 грудусам . найдите боковую поверхность параллелепипеда , если большая диоганаль основания равна меньшей диогонали параллелепида
Ваше имя (никнейм)*
Email*
Комментарий*