ccc712835
?>

Высота конуса равна 12 см, а его объем 324 п см^3. найдите радиус основания конуса

Геометрия

Ответы

Оксана Николаевич
V=\frac{1}{3} \pi r*r*h
Следовательно чтоб найти радиус, выведем его из формулы

r= \sqrt{ \frac{324 \pi }{ \frac{1}{3} \pi } }
r= \sqrt[3]{972}
tonyakuznetsova
Основание правильной четырехугольной призмы- квадрат со стороной а,
а=24/4=6 см, боковое ребро ⊥ основанию и равно 10, 
площадь полной поверхности призмы равна  Sбок+2Sосн, Sбок = 10*4а=
10*24=240 см², Sосн= а²= 6²=36 см², Sполн=Sбок+2Sосн=240+2*36=
240+72=312 см²,
основание правильной треугольной призмы- равносторонний Δ со стороной а=24/3=8 см, и тремя равными углами α= 180°/3=60°,
Sосн= а²sin60°/2= (8²*√3/2)/2=64√3/4= 16√3 см²,
боковое ребро ⊥ основанию и равно 10 см, т е 
Sбок= 3а*h= 3*8*10=240 см², Sполн= Sбок+2Sосн= 240+ 32√3,
сравним площади полных поверхностей этих призм:
312=240+72 > 240+32√3,  (√3 < 2) , т е  у нас полная поверхность 
четырехугольной призмы больше треугольной
mamanger

ответ:

якласс лого

1. теорема синусов, теорема косинусов

теория:

теорема синусов

теорему пифагора и тригонометрические функции острого угла можно использовать для вычисления элементов только в прямоугольном треугольнике.

для нахождения элементов в произвольном треугольнике используется теорема синусов или теорема косинусов.

4cepure.jpg

теорема синусов

стороны треугольника пропорциональны синусам противолежащих углов:

asina=bsinb=csinc

(в решении одновременно пишутся две части, они образуют пропорцию).

теорема синусов используется для вычисления:

неизвестных сторон треугольника, если даны два угла и одна сторона;

неизвестных углов треугольника, если даны две стороны и один прилежащий угол.

так как один из углов треугольника может быть тупым, значение синуса тупого угла находится по формуле sin(180°−α)=sinα .

наиболее часто используемые тупые углы:

sin120°=sin(180°−60°)=sin60°=3√2; sin150°=sin(180°−30°)=sin30°=12; sin135°=sin(180°−45°)=sin45°=2√2.

радиус описанной окружности

треуг2.jpg

asina=bsinb=csinc=2r , где r — радиус описанной окружности.

выразив радиус, получаем r=a2sina , или r=b2sinb , или r=c2sinc .

теорема косинусов

для вычисления элементов прямоугольного треугольника достаточно 2 данных величин (две стороны или сторона и угол).

для вычисления элементов произвольного треугольника необходимо хотя бы 3 данных величины.

4cepure.jpg

теорема косинусов

квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

a2=b2+c2−2⋅b⋅c⋅cosa .

также теорема исполняется для любой стороны треугольника:

b2=a2+c2−2⋅a⋅c⋅cosb ;

c2=a2+b2−2⋅a⋅b⋅cosc .

теорема косинусов используется для вычисления:

неизвестной стороны треугольника, если даны две стороны и угол между ними;

вычисления косинуса неизвестного угла треугольника, если даны все стороны треугольника.

значение косинуса тупого угла находится по формуле cos(180°−α)=−cosα .

наиболее часто используемые тупые углы:

cos120°=cos(180°−60°)=−cos60°=−12; cos150°=cos(180°−30°)=−cos30°=−3√2; cos135°=cos(180°−45°)=−cos45°=−2√2.

если необходимо найти приблизительное значение синуса или косинуса другого угла или вычислить угол по найденному синусу или косинусу, то используется таблица или калькулятор.

вернуться в тему

следующее

copyright © 2019 якласс

контакты пользовательское соглашение

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Высота конуса равна 12 см, а его объем 324 п см^3. найдите радиус основания конуса
Ваше имя (никнейм)*
Email*
Комментарий*