Fedorovich_Aleksandrovich685
?>

Решите треугольник abc, если угол ab =30°, угол c=105°, bc=3√2 см.

Геометрия

Ответы

Hugokate77729
Решить треугольник - найти его характеристики по заданным условиям. Нам надо найти угол BAC, стороны AC и AB.
Найдём угол BAC:
BAC = 180° - (30° + 105°) = 180° - 135° = 45°
По теореме синусов найдём сторону AC:
(BC)/(sinBAC) = (AC)/(sinABC);
(3√2)/(√2/2) = (AC)/(1/2);
AC = (3√2 * 1/2)/(√2/2) = 3√2 * 1/2 * 2/√2 = (3√2)/(√2) = 3 см
По той же теореме синусов найдём сторону AB:
(AC)/(sinABC) = (AB)/(sinBCA);
sin105° = sin(50+50+5) = 0.766 + 0.766 + 0.0871 = 1.6191
(3)/(1/2) = (AB)/(1.6191);
AB = (3 * 1.6191)/(1/2) = 3 * 1.6191 * 2 = 9.7146 ≈ 10 см
ответ: угол BAC = 45°; AC = 3 см; AB = 10 см
Решите треугольник abc, если угол ab =30°, угол c=105°, bc=3√2 см.
alislisa191

Пусть АВС - прямоуг. равноб. треугольник, где АВ и АС -катеты, и АВ = АС, т. е. угол А - прямой. Из вершины В проведена биссектриса до пересечения с катетом АС в точке Д. Нужно найти соотношение АД и ДС.

Известно, что биссектриса делит противоположную сторону треугольника на части, пропорциональные прилежащим сторонам ( из свойств биссектрисы) .

Значит, АД/ДС = АВ/ВС. Пусть АВ = АС = а . Тогда ВС^2 = а^2 + a^2 = 2a^2 . BC = кв. корень (2a^2) = a*кв. корень (2) .

Тогда АД/ДС = а / ( а*кв. корень (2)) = 1 / кв. корень (2).

Т. е. отрезки катета, разделенные биссектрисой, относятся друг к другу как единица к квадратному корню из двух, считая от прямого угла.

Объяснение:

oksit

(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:

(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;

(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;

8² + b² = (4 – b)²;

b² – 8 ∙ b + 4² – 8² – b² = 0;

8 ∙ b = – 48;

b = – 6, тогда, R = 10, и уравнение окружности примет вид:

х² + (у + 6)² = 10².

ответ: х² + (у + 6)² = 10² – уравнение данной окружности.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Решите треугольник abc, если угол ab =30°, угол c=105°, bc=3√2 см.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

afomin63
СергейНиколаевич
informalla
sorokinae
horina12
adminaa
Maksim Dmitrii1579
dvpered
Чиркина999
ЛАРИСА Насоновская231
zaalmix
Viktorovna_Yurevna
andreevaalisa
vlrkinn
dmitriy