Margarita
?>

Найдите длину окружности, описанной около квадрата с диагональю d.

Геометрия

Ответы

Gradus469
Диагональ квадрата является диаметром окружности, то радиус равен d/2 =0.5d, C=2πr=πd
ответ: C=πd
yurazharov
Удивительно, но эта такая сложная по формулировке задача решается в одно действие.
Угол между высотами, выходящими (например, тут полный произвол в обозначениях) из вершин углов A и B; равен 180 - С;
Это можно просто сосчитать, как 180 - (90 - A) - (90 - B) = A + B = 180 - C;
а можно просто заметить, что четырехугольник, образованный сторонами угла С и высотами (ну кусочками), выходящими из углов A и B, очевидно является вписанным (да даже еще проще - в нем два угла прямых).
а можно просто заметить, что у угла С и угла между высотами СТОРОНЫ ПЕРПЕНДИКУЛЯРНЫ. :)
Поэтому в обоих треугольниках напротив общей их стороны AB лежат углы, синусы которых равны.
Поэтому (по теореме синусов) равны радиусы окружностей, описанных вокруг этих треугольников.
Nikol27051986

Трапецию обозначим АВСД, АД//ВС. Из вершины С опустим высоту СМ, а из вершины В опустим высоту ВК. Тогда КМ=ВС=5,  АК=МД=(13-5)/2=4,  а АМ=АД-МД=13-4=9. По условию АС перпендикулярно СД, значит треугольник АСД прямоугольный и угол АСД=90.Из прямого угла опущена высота СМ. По свойству высоты, опущенной из прямого угла, её квадрат равен произведению отрезков гипотенузы, на которые эту гипотенузу делит основание высоты.То есть  СМ^2=AM*MD,  CM^2=9*4=36, CM=6. Из треугольника СМД по теореме Пифагора найдем СД.  СД^2=CM^2+MД^2=36+16=52, CД=√52.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите длину окружности, описанной около квадрата с диагональю d.
Ваше имя (никнейм)*
Email*
Комментарий*