Пусть H - середина ABCD, MH - высота пирамиды MABCD,
MH - медиана, биссектриса и высоты треугольника DBM => H - середина DB=> HL - средняя линия треугольника DMB => 2LH=DH;
AH перпендикулярно BD ( как диагонали квадрата),
AH перпендикулярно МH ( т.к. МH - высота пирамиды)
DB пересекает MH в точке H => AH перпендикулярна плоскости DMB, значит угол HLA = 60° (по условию),
CA = √(CB^2+AB^2)=6√2 (по теореме Пифагора)
HA=1/2CA=3√2
LM=AH/tg60° = √6
DM=2LM=2√6
MH=√(DM^2-DH^2)=√6 (по теореме Пифагора)
ответ: √6
Поделитесь своими знаниями, ответьте на вопрос:
Отрезки ab и ce пересекаются в их общей середине o . на отрезках ac и be отмечены точки k и m так, что ak равно bm. доказать, что ok равно om ( )
ΔOEB = ΔOCA по двум сторонам и углу между ними (OB=OA, OE=OC по условию; ∠EOB=∠COA как вертикальные), поэтому ∠CAO=∠EBO.
ΔOAK = ΔOBM по двум сторонам и углу между ними (OA=OB, AK=BM по условию; ∠KAO=∠MBO т.к. ∠CAO=∠EBO), поэтому OK=OM ч.т.д.