Параллелограмм - это четырехугольник, у которого противолежащие стороны попарно параллельны.
Если мы докажем, что BC║AD и AB║CD, то докажем, что ABCD параллелограмм.
1) ∠DBC = ∠BDA по условию, а это внутренние накрест лежащие углы при прямых BC и AD и секущей BD ⇒ BC║AD. (если внутренние накрест лежащие угли при двух прямых и секущей равны, то эти прямые параллельны).
2) ΔBOC = ΔAOD по второму признаку (стороне и двум углам):
BO = OD по условию, ∠OBC = ∠ODA по условию, ∠BOC = ∠AOD вертикальные углы.
В равных треугольниках соответствующие стороны равны. AO = OC
3) ΔAOB = ΔCOD по первому признаку:
BO = OD по условию, AO = OC по доказанному, ∠AOB = ∠COD - вертикальные углы.
Из равенства треугольников следует равенство соответствующих углов.
∠BAO = ∠DCO, это внутренние накрест лежащие углы при прямых AB и CD и секущей AC. ⇒ AB ║CD
4) В четырехугольнике ABCD AD║BC и AB ║ CD. Четырехугольник ABCD параллелограмм.
Доказано.
В параллелограмме, тупой угол которого равен 150°, острый равен 180-150=30°
Биссектриса делит тупой угол пополам, следовательно, угол при пересечении ее со стороной, к которой она проведена,тоже равен ее половине ( сумма углов треугольника, так же, как сумма углов параллелограмма при одной стороне, равна 180°).
Благодаря биссектрисе получился равнобедренный треугольник с углами при основании, равными 75° ( это значения здесь не имеет) и сторонами 16 см.
Меньшая сторона параллелограмма равна 16 см, высота, которую мы проведем из вершины тупого угла к большей стороне, равна половине от 16,т.к. противолежит углу 30°.
Имеем все данные для вычисления площади параллелограмма:
высота 8 см
основание 16+5=21 см
S=8·21= 168 см²
-----------------
2..
Площадь треугольника равна половине произведения высоты на основание, к которому она проведена.
Высота
h=7√2*sin (45º)=7√2* √2:2=7*2:2=7см
Основание =10 см
S=19*7:2=35 cм²
-------------------------------------------
Третья задача - в рисунке, ничего сложного там нет - разберетесь.
Поделитесь своими знаниями, ответьте на вопрос:
Не находя корней квадратного уравнения х²-4х-7=0, найдите сумму квадратов его корней
x1+x2=4 U x1*x2=-7
x1²+x2²=(x1+x2)²-2x1*x2=4²-2*(-7)=16+14=30