shhelina
?>

1)определение равнобедренного треугольника. свойство углов при основании равнобедренного треугольника. 2)найдите величины смежных углов, если один из них в 5 раз больше другого.

Геометрия

Ответы

snow8646
1)В равнобедренном треугольнике две боковые стороны равны друг другу
2)Углы при основании равнобедренного треугольника равны
Irina Svetlana

Теорема 1. В треугольнике против большей стороны лежит больший угол.

Доказательство. Пусть в треугольнике ABC сторона АВ больше стороны АС (рис.1, а).

Рис.1

Докажем, что ∠ С > ∠ В. Отложим на стороне АВ отрезок AD, равный стороне АС (рис.1, б). Так как AD < АВ, то точка D лежит между точками А и В. Следовательно, угол 1 является частью угла С и, значит, ∠ C > ∠ 1. Угол 2 — внешний угол треугольника BDC, поэтому Z 2 > Z В. Углы 1 и 2 равны как углы при основании равнобедренного треугольника ADC. Таким образом, ∠ С > ∠ 1, ∠ 1 = ∠ 2, ∠ 2 > ∠ B. Отсюда следует, что ∠ С > ∠ В.

Справедлива и обратная теорема (ее доказательство проводится методом от противного).

Теорема 2. В треугольнике против большего угла лежит большая сторона.

Из теоремы 1 вытекает

Следствие 1. Если два угла треугольника равны, то треугольник равнобедренный (признак равнобедренного треугольника).

Доказательство следствия проводится методом от противного.

Из следствия 1 следует, что если три угла треугольника равны, то треугольник равносторонний.

Из теоремы 2 получаем

Следствие 3. В прямоугольном треугольнике гипотенуза больше катета.

С использованием теоремы 2 устанавливается следующая теорема.

Теорема 3. Каждая сторона треугольника меньше суммы двух других сторон.

Следствие 4. Для любых трех точек А, В и С, не лежащих на одной прямой, справедливы неравенства: 
АВ < АС + СВ, АС < АВ + ВС, ВС < ВА + АС.

gorodof4292
У=2х=4х-12
-2х=-12
х=6 - точка пересечения двух линейных ф-ций
у=2х=2*6=12
Координата пересечения (6;12).

Построим первый график у=2х
х=0 у=0 => (0;0)
х=6 у=12 => (6;12)

Построим второй график у=4х-12
х=3 у=0 => (3;0)
х=6 у=12 => (6;12)

Третий график проходит по оси ох, ограничивая два линейных выше, которые пересеклись.

Фигура получилась - треугольник.

Найдем ее площадь как разницу площадей двух прямоугольных треугольников:

SΔAOB=SΔAOC-SΔABC=1/2*12*6-1/2*12*3=1/2(72-36)=1/2*36=18 см²

Можно найти иначе площадь фигуры, через интегралы:
\int\limits^6_0 {2x} \, dx - \int\limits^6_3 {(4x-12)} \, dx = x^{2}|\limits^6_0-(2 x^{2} -12x)\limits^6_3= \\ =36-0-(2*36-12*6-(2*9-12*3))= \\ =36-72+72+18-36=18

Получили такой же ответ: S=18 см²
Вычислите площади фигур , ограниченных следующими линиями: y=2x,y=4x-12,y=0

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1)определение равнобедренного треугольника. свойство углов при основании равнобедренного треугольника. 2)найдите величины смежных углов, если один из них в 5 раз больше другого.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ахмедшина Трубников1249
filimon211
l250sp70
len4ik1986
Butsan-Bagramyan
rmitin
kireevatatiana
dlydesertov1
Краева
Михайлов
ganzashop
Константин
Екатерина15
olg14855767
samoilovcoc