Даны координаты вершин треугольника АВС: A (-4;1), B (-2;4), С(1;2).
1) Расчет длин сторон
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √13 ≈ 3,605551275.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √13 ≈ 3,605551275.
AC (в) = √((Хc-Хa)²+(Ус-Уa)²) = √26 ≈ 5,099019514.
Есть ответ на одно задание - треугольник равнобедренный.
2) Получив значения длин сторон, найдём площадь по формуле Герона.
S = √(p(p-a)(p-b)(p-c)). Полупериметр р = 6,15506.
Подставив данные, получаем S = 6,5 кв.ед.
Можно применить формулу расчёта площади по координатам вершин треугольника.
Площадь треугольника ABC:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)| = 6,5
.
ответ:Диагонали равнобедренную трапецию делят на 4 треугольника,два треугольника,у которых одной стороной являются бОльшее или меньшее основание,равнобедренные,а два других,у которых в наличии боковые стороны трапеции,равны между собой
<ВОС=<АОD=110 градусов,как вертикальные
<ОВС=<ВСО=(180-110):2=35 градусов,как углы при основании равнобедренного треугольника ВСО
Треугольник АОD тоже равнобедренный
<ОАD=<ODA=(180-110):2=35 градусов
<АОВ=<СОD=(360-110•2):2=(360-220):2=140:2=70 градусов
В условии указано,что
ВС=АВ=СD
Рассмотрим треугольник АВС,он равнобедренный,т к
АВ=ВС по условию задачи
Следовательно,
<ВАС=<ВСА=35 градусов
Тогда,
<В=(180-35•2)=110 градусов
<С=<В=110 градусов,как углы при основании равнобедренной трапеции
<А=180-110=70 градусов,т к сумма углов прилежащих к боковой стороне равна 180 градусов
<D=<A=70 градусов,т к углы при основании равнобедренной трапеции равны между собой
Как было сказано выше-
Треугольник АВО равен треугольнику СOD по определению,значит
<АВО=<DCO=180-(70+35)=180-105=75 градусов
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вправильной шестиугольной пирамиде все рёбра уменьшили в пять раз. во сколько раз уменьшилась площадь полной поверхности пирамиды?