Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Поделитесь своими знаниями, ответьте на вопрос:
Как расположены относительно друг друга две окружности, если расстояние между их центрами равно: а)15 см, а радиусы равны 9 см и 7см; б) 8 см, а диаметры равны 20 см и 2 см?
б)тоже пересекаться, т.к. расст. 8 , а радиусы в сумме дают 11