Вертикальные углы находятся друг напротив друга, а рядом лежащие углы являются смежными, так как у них одна сторона общая, а не общие стороны лежат на одной прямой.
Равенство вертикальных углов является следствием определения смежных углов. Смежные углы по определению в сумме составляют 180°.
Возьмем любой угол, образованный двумя пересекающимися прямыми, обозначим его как ∠1 и примем его величину как a.
Тогда смежный ∠2 с ним будет равен 180° – a. Но у этого ∠2 с другой стороны есть другой смежный угол – ∠3. Его величина будет равна 180° минус величина ∠2. Но ∠2 у нас равен 180° – a, поэтому:
∠3 = 180° – ∠2 = 180° – (180° – a) = 180° – 180° + a = a
То есть ∠1 и ∠3 равны.
Можно продолжить и доказать, что ∠4 равен ∠2. Если ∠3 равен a, то ∠4, как смежный с ним, равен 180° – a.
На рисунке ниже доказательство выглядит несколько по-другому. ∠2 смежный и с ∠1, и с ∠3. Поскольку его величина постоянна, а сумма смежных углов равна 180°, то чтобы получить величину ∠2, надо из 180 вычитать одно и то же число, значит ∠1 = ∠3.

ответ: Р=162 см
Объяснение:
Пусть дана прямоугольная трапеция ABCD. у которой ВС и AD - основания, угол А =углу В=90 градусов. О- центр вписанной в трапецию окружности, точка М - точка касания окружности стороны AD и точка К - точка касания окружности стороны ВС. АМ=20 см, MD=25 см, тогда ОМ=ОК=r=20см и АВ=40 см. DM=DK=25 см как отрезки касательных,проведенных из одной точки. Угол С+ угол D трапеции=180 градусов, как внутренние накрест лежащие углы, DO и CO - биссектрисы соответствующих углов, то угол CDO+DCO=90градусов, следовательно угол COD=90 градусов, т.е. треугольник COD - прямоугольный, у которого ОК - высота, проведенная к гипотенузе, OK^2=DK*CK, CK=400/25=16 см. Значит периметр трапеции равен 20+25+25+16+16+20+40=162 см
Поделитесь своими знаниями, ответьте на вопрос:
Найти радиус окружности описанной около равностороннего треугольника со стороной 12 см