Елена_Кошевой
?>

1. найдите высоту трапеции, основания которой равны 16 и 44, а боковые стороны - 17 и 25 (нужно провести две высоты, обозначить их через х, применить т. пифагора до этих двух треугольников, приравнять их, но у меня не получается) 2. в равносторонний трапецию вписана окружность. найдите боковую сторону этой трапеции, если острый угол при основании равен 30 *, а площадь - 32.

Геометрия

Ответы

tobolenecivanov1675
1.Трапеция ABCD. AB=16. DC=44. AD=17. BC=25.
Проведем две высоты: АМ и BN. Обозначим каждую высоту за х.
Сторону NC обозначим за у.
Тогда DM=44-16-y=28-y.
По Пифагору:
•треугольник AMD:
х^2=17^2-(28-у)^2
х^2=289-784+56у-у^2
x^2=56y-y^2-495
•треугольник BCN:
х^2=25^2-у^2
х^2=625-у^2
Приравниваем:
56у-у^2-495=625-у^2
56у=1120
у=20.
Подстваляем в любое уравнение:
х^2=625-20^2
х^2=225
х=15.
ответ: высота трапеции - 15.
2. Трапеция ABCD.
Угол ADC=30 градусов.
AD=BC=x - боковая сторона.
Проводим высоту АМ. Обозначаем еe за h.
S=(AB+DC)*h/2.
По свойству(если в четырехугольник вписана окружность, то сумма двух его параллельных сторон равна сумме двум другим параллельным сторонам) определяем, что AB+DC=AD+BC=2x.
S=2x*h/2=x*h=32.
Находим высоту:
Так как она лежит напротив угла в 30 градусов, то по Пифагору она равна половине гипотенузы, т.е. h=x/2.
Подставляем в формулу:
S=x*x/2=32
х^2=64
х=8.
ответ: боковая сторона равнобокой трапеции - 8.
Александрович Владимирович

Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия.  Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.

Смотри рисунок.

Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).

Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:

О((-4+2)/2; (2-3)/2) или О(-1;-0,5).

R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.

ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.

Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.

В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0.  => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).


Определите координаты вершин а и с прямоугольника abcd, если в (−4; 2) и d (2; −3)
Akopovich802
Если все грани наклонены под одинаковыми углами, то высота пирамиды падает в центр вписанной окружности, то есть в точку О пересечения биссектрис треугольника.
Треугольник со сторонами 5, 12 и 13 - прямоугольный, угол С - прямой.
AC = 5; BC = 12; AB = 13
Периметр треугольника P = 5 + 12 + 13 = 30; площадь S = 5*12/2 = 30
Найдем радиус вписанной окружности.
r = OK = OM = ON = 2S/P = 2*30/30 = 2 см
Высота H = OD = 4√2 см
Апофемы, перпендикулярные к ребрам основания
DK = DM = DN = √(r^2 + H^2) = √(4 + 16*2) = √36 = 6 см
Площади боковых граней
S(ABD) = DN*AB/2 = 6*13/2 = 3*13 = 39 кв.см.
S(ACD) = DK*AC/2 = 6*5/2 = 3*5 = 15 кв.см.
S(BCD) = DM*BC/2 = 6*12/2 = 6*6 = 36 кв.см.
S(бок) = S(ABD) + S(ACD) + S(BCD) = 39 + 15 + 36 = 90 кв.см.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1. найдите высоту трапеции, основания которой равны 16 и 44, а боковые стороны - 17 и 25 (нужно провести две высоты, обозначить их через х, применить т. пифагора до этих двух треугольников, приравнять их, но у меня не получается) 2. в равносторонний трапецию вписана окружность. найдите боковую сторону этой трапеции, если острый угол при основании равен 30 *, а площадь - 32.
Ваше имя (никнейм)*
Email*
Комментарий*