Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
AD^2=AB^2+BD^2-2*AB*BD*cos120=2*AB^2+2*AB^2*cos60=6*256+3*256=9*256AD=3*16=48МОЖНО ЕЩЕ ПРОЩЕ.Из точки В опустить перпендикуляр на AD, пусть будет ВК и тогда треуг. ACB=треуг. ABK(по гипетенузе и острому углу) и получим AC=AK=24, тогда AD=48( высота в равнобедр.треуг. является медианой.)ответвших AB=24/sin60=16*sqrt(3), AB=BD, угол ABD=120гр. пО ТЕОРЕМЕ КОСИНУСОВ AD^2=AB^2+BD^2-2*AB*BD*cos120=2*AB^2+2*AB^2*cos60=6*256+3*256=9*256AD=3*16=48МОЖНО ЕЩЕ ПРОЩЕ.Из точки В опустить перпендикуляр на AD, пусть будет ВК и тогда треуг. ACB=треуг. ABK(по гипетенузе и острому углу) и получим AC=AK=24, тогда AD=48( высота в равнобедр.треуг. является медианой
за такую задачу мало хотяби 10 но ответ я дам
Поделитесь своими знаниями, ответьте на вопрос:
Основи трапеції дорівнюють 3 і 6 а діагоналі 7 і 8. знайдіть площу трапеції. будь-ласка
Из вершины тупого угла проводится параллельная диагонали прямая, Затем вычисляется по ф.Герона площадь получившегося треугольника, который имея общую с трапецией высоту и основание, равное сумме оснований трапеции, равен ей по площади.