1) найдем сторону аb по теореме Пифагора :
2 2 2
pb = pa + ab
2 2 2 2
ab = корень (pb - pa ) = корень (17 - 8 ) = 15
2) найдем сторону ас по теореме Пифагора :
2 2 2 2
ас = корень ( pc - pa ) = корень (4корень13 - 8 ) = корень ( 16 * 13 - 64) = 12
3) найдем сторону cb по теореме Пифагора :
2 2 2 2
cb = корень (ab - ac ) = корень (15 - 12 ) = 9
4) Площадь прямоугольного треугольника = 1/2 произведений катетов найдем площади трех прямоугольних треугольников:
Sapb = 1/2 (pa * ab) = 1/2(8*15) = 60
Sapc = 1/2 (ap * ac) = 1/2(8*12) = 48
Sacb =1/2 (ac * cb) = 1/2(12*9)=54
найдем площадь треугольника Spcb = 1/2(pc * cb) = 1/2 (4корень13 * 9)
найдем площадь пирамиды Sapb + Sapc + Sacb + Spcb = 60 + 48 + 54 + 1/2(4корень13*9)
Поделитесь своими знаниями, ответьте на вопрос:
Боковая сторона равнобедренного треугольника равна 40 см, а высота, проведенная к основанию, – 4√91 см. найдите расстояние между точками пересечения биссектрис углов при основании треугольника с его боковыми сторонами.
Тр-ки АРС и АКС равны, так как ∠АСК=∠САР, ∠КАС=∠РСА, сторона АС - общая, значит АК= РС, значит КР║АС, значит треугольники АВС и КВР подобны.
В прямоугольном тр-ке АВМ АМ²=АВ²-ВМ²=40²-(4√91)²=144,
АМ=12 см, АС=2АМ=24 см.
Коэффициент подобия тр-ков АВС и КВР равен: k=АВ/КВ.
По теореме биссектрис в тр-ке АВС с биссектрисой СК: ВС/АС=КВ/АК ⇒ КВ=ВС·АК/АС.
АК=АВ-КВ, значит КВ=ВС(АВ-КВ)/АС.
КВ=40(40-КВ)/24,
24КВ=1600-40КВ,
64КВ=1600,
КВ=25 см, Подставим это значение в формулу коэффициента подобия: k=АВ/КВ=40/25=1.6
Исходя из подобия тр-ков АВС и КВР КР=АС/k=24/1.6=15 см - это ответ.