15. Периметр четырехугольника равен 12 см, а радиус вписанной окружности – 7 см. Площадь данного четырехугольника равна 42 см².
Ivanskvortsov25
12.11.2020
периметр равностароннего треугольникаравен 45 см. логично что если все стороны у треугольника равны то 45 нужно делить на 3 и получить результат45: 3=15 равнобедренный треугольник имеет основание,равное 7см, и одну боковую сторону, равную 3 см. в равнобедренном треугольнике всегда 2 стороны равны так что или 3+3+7=13 или 3+7+7=17.
1. Прямая и окружность имеют одну общую точку, если расстояние от центра окружности до прямой равно радиусу окружности.
2. Если прямая СD проходит через конец радиуса ОК и СD ОК, то СD является касательной к данной окружности.
3. Угол АВС является вписанным, если точка В лежит на окружности, а лучи ВА и ВС пересекают окружность.
4. Вписанные углы равны, если они опираются на одну дугу.
6. Если отрезки АВ и АС – отрезки касательных к окружности, проведенных из одной точки, то AB = AC.
7. Если четырехугольник описан около окружности, то cуммы его противоположных сторон равны.
8. Центр окружности, описанной около треугольника, совпадает с точкой пересечения серединных перпендикуляров треугольника.
9. Если точка С равноудалена от концов данного отрезка, то она лежит на серединном перпендикуляре к этому отрезку.
10. Если точка D лежит на биссектрисе данного угла, то она равноудалена от сторон этого угла.
11. В любой треугольник можно вписать окружность.
12. В любом описанном четырехугольнике суммы противоположных сторон равны.
13. В прямоугольном треугольнике катеты равны 3 и 4 см. Радиус описанной окружности равен 2,5 см.
14. Четырехугольник АВСD вписан в окружность. ∟А = 80о, ∟В = 110о. ∟С= 100°, ∟D= 70°.
15. Периметр четырехугольника равен 12 см, а радиус вписанной окружности – 7 см. Площадь данного четырехугольника равна 42 см².