Лилин1079
?>

Впрямоугольном треугольнике гипотенуза равна 10 см, а один из катетов - 5 см. найдите наибольший из острых углов данного треугольника

Геометрия

Ответы

vasavto1
Один из катетов равен 5, а гипотенуза равна 10, значит синус противолежащего этому катету угла равен 5/10=0.5, значит этот угол равен 30 градусам Нужно найти больший угол, и он равен 180-90-30=60 градусов, т.к. сумма углов треугольника равна 180 градусам ответ: 60 градусов
Pavlovna-Golovitinskaya378

меньший катет АС=6см, больший катет ВС=12√3 см

Объяснение:

обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:

\frac{ac}{ab} = \frac{ah}{ac}

теперь подставим наши значения в эту пропорцию:

\frac{ac}{24} = \frac{6}{ac}

перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:

АС ²=6×24=144

АС=√144=12см

Теперь найдём катет ВС по теореме Пифагора:

ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см


1)Проекція катетів прямокутного трикутника на гіпотенузу відповідно дорівнюють 18см і 6 знайдіть мен
vyborovvs

Отрезок, соединяющий основания высот треугольника, является стороной ортотреугольника (т.е. треугольника, вершинами которого являются основания высот исходного).  Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.

  Доказательсто:  У прямоугольных треугольников АС1С и АА1С общая гипотенуза, а, значит, около них можно описать одну окружность. Четырехугольник АСА1С1 вписанный. Сумма противоположных углов вписанного четырехугольника 180°.

Угол С1АС=угол ВА1С1 ( составляют 180° в сумме с углом С1А1С)

 Вписанный угол ВАС и угол ВАС - между касательной и хордой – равны половине дуги ВС ( свойство), следовательно,  ∠ВАС=∠ВАС

Прямые ВК и С1А1  пересекаются  секущей ВА1, накрестлежащие ∠КВА1=∠ВА1С1 ( доказано выше).⇒ ВК и С1А1 параллельны.

 Радиус, проведенный в точку касания с прямой, перпендикулярен этой прямой. Следовательно, ВО перпендикулярен  как ВК, так и С1А1, что и требовалось доказать.


В остроугольном треугольнике вписанном в окружность с центром в точке О проведены высоты СС1 и AA1.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Впрямоугольном треугольнике гипотенуза равна 10 см, а один из катетов - 5 см. найдите наибольший из острых углов данного треугольника
Ваше имя (никнейм)*
Email*
Комментарий*