меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Отрезок, соединяющий основания высот треугольника, является стороной ортотреугольника (т.е. треугольника, вершинами которого являются основания высот исходного). Радиусы описанной окружности, проведённые к вершинам треугольника, перпендикулярны соответствующим сторонам ортотреугольника.
Доказательсто: У прямоугольных треугольников АС1С и АА1С общая гипотенуза, а, значит, около них можно описать одну окружность. Четырехугольник АСА1С1 вписанный. Сумма противоположных углов вписанного четырехугольника 180°.
Угол С1АС=угол ВА1С1 ( составляют 180° в сумме с углом С1А1С)
Вписанный угол ВАС и угол ВАС - между касательной и хордой – равны половине дуги ВС ( свойство), следовательно, ∠ВАС=∠ВАС
Прямые ВК и С1А1 пересекаются секущей ВА1, накрестлежащие ∠КВА1=∠ВА1С1 ( доказано выше).⇒ ВК и С1А1 параллельны.
Радиус, проведенный в точку касания с прямой, перпендикулярен этой прямой. Следовательно, ВО перпендикулярен как ВК, так и С1А1, что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Впрямоугольном треугольнике гипотенуза равна 10 см, а один из катетов - 5 см. найдите наибольший из острых углов данного треугольника