25.
тр. BCF и тр. BDC
общая сторона BC, 2 равных угла. равны по 2 признаку равенства.
тр. ABE и тр. BCD. 2 равных стороны, равные углы между ними. равны по 1 признаку равенства.
тр. ABE и тр. FBC равны, тк предыдущие треугольники тоже равные.
26.
тр AMB и тр. DNC равны по 3м сторонам. По 3 признаку.
тр. ADM и BNC равны по 3м сторонам, 3 признак.
27.
тр. EDO и тр COF по двум сторонам и углу между ними, 1 признак равенства.
тр. AEO и тр FOB равны по 2м прилежащим углам и стороне. 2 признак
тр. AOD и COB равны, тк предыдущение тр. тоже равны.
28.
тр DEC и тр AFB равны по трем сторонам, 3 признак.
тр FCB и тр. DEA равны по трем сторонам, 3 признак.
29.
тр ADF и тр BEC равны по 2м сторонам и углу между ними. углы равны, тк накрестлежащие. 1 признак
боковые равны по трем сторонам, 3 признак.
31. боковые треугольники равны по 2м сторонам и углу между ними. 1 признак равенства.
32. тр DEO и тр COF равны по 2м сторонам и углу между ними, 1 признак.
боковые равны по 2м сторонам и углу между ними, 1 признак.
Треугольник EKL равносторонний, его стороны
a^2 = 1^2 + (1/2)^2 + (1/2)^2 = 3/2; a = √(3/2);
KM = a*3/5; KN = a*4/5; cos(∠MKN) = cos(60°) = 1/2;
По теореме косинусов
MN^2 = (a*3/5)^2 + (a*4/5)^2 - (a*3/5)*(a*4/5) = a^2*13/25;
MN = a*√13/5 = √78/10;
В одном из комментариев комментарии я упоминаю, что можно так повернуть куб, чтобы точки E K L циклически поменялись местами E -> K; K -> L; L -> E; и можно сделать это повторно :) . Именно это является главным обоснованием того, что EKL - равносторонний треугольник.
Поделитесь своими знаниями, ответьте на вопрос:
Найти радиус окружности, впис. в треугольник bcd, если она касает стороны bc в точку p, и bd=bc=15см, cp=12см
r=S/p=108/27=4 r=4