Пусть ВМ=МС=а. Тогда, поскольку противоположные стороны параллелограмма равны и параллельны, АD=2a. Треугольники ВКМ и АКD подобны по трем углам: равны вертикальные углы при К и накрестлежащие при пересечении параллельных прямых секущими ВD и АМ. Коэффициент подобия k=AD:BC=2a:a= 2. Отсюда КD:BK=2:1⇒ BK+KD= 3 части. 12:3=4 ВК=1 часть ВК=4
lobanosky162
20.11.2021
Соединим середину стороны АД и вершину С прямой СН. СН║АМ т.к. МС║АН и МС=АН. Прямые СН и ВД пересекаются в точке Р. В тр-ке ВРС КМ - средняя линия, значит ВК=КР. Тр-ки АВМ и ДСН равны по трём равным сторонам., значит ВК=РД. ВД=ВК+КР+РД=3BK ⇒ ВК=ВД/3=12/3=4 - это ответ.
boldyrevanastia22
20.11.2021
* * * пропорциональные отрезки в прямоугольном треугольнике * * h² =a₁*b₁,где a₁ и b₁ проекции катетов a и b на гипотенузе(отрезки разд. высотой) || Пусть a₁ =9 см ; b₁= (h+4) см || . h² =9(h+4) ; h² -9h -36 =0 ; [h= -3 ( не решения ) ; h =12 (см) . b₁ =h+4 = 12+4 =16 (см). Гипотенуза c = a₁+b₁ = 9 см+ 16 см =25 см .
a =√(a₁²+ h²) = √(9²+ 12²) =15 (см) . || 3*3; 3*4 ; 3*5 || или из a² =c*a₁=25*9⇒ a=5*3 =15 (см) . b = (b₁²+ h²) = √(16²+ 12²) = 20 (см) . || 4*3; 4*4 ; 4*5 || или из b² =c*b₁=25*16 ⇒ b=5*4 =20 (см) .
ответ: 15 см, 20 см, 25 см . || 5*3; 5*4 ; 5*5 |
Aleksandr72
20.11.2021
3 см Так как треугольник равносторонний, то все его стороны равны. АВ=ВС=АС=2√3Биссектриса в равностороннем треугольнике является медианой и высотой. Медиана ВН (она же биссектриса, она же высота) делит треугольник АВС на два треугольника. B AHC Рассмотрим треугольник АВН: Т. к ВН-биссектриса, то угол АВН=30° (т. к в равностороннем треугольнике все углы равны 60°).Треугольник АВН - прямоугольный (т. к ВН еще и высота). По св-ву прямоугольного треугольника, один из углов которого равен 30°:АВ - гипотенуза треугольника АВН. АН - катет, лежащий против угла в 30°.Значит, АН=1/2*АВАН=1/2*2√3АН=√3Теперь, по теореме Пифагора найдем сторону ВН. АВ2=ВН2+АН2(2√3)2=х2+(√3)2(√12)2=х2+312=х2+3 ==> х2=9 х=3ВН=3 см. ответ: ВН=3 см
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Впараллелограмме abcd отмечена точка m-середина стороны bc. отрезки bd и am пересекаются в точке k. найдите bk, если bd=12
Тогда, поскольку противоположные стороны параллелограмма равны и параллельны, АD=2a.
Треугольники ВКМ и АКD подобны по трем углам: равны вертикальные углы при К и накрестлежащие при пересечении параллельных прямых секущими ВD и АМ.
Коэффициент подобия k=AD:BC=2a:a= 2.
Отсюда КD:BK=2:1⇒
BK+KD= 3 части.
12:3=4
ВК=1 часть
ВК=4