alyans29
?>

Abcd - квадрат, вне которого взяли точку е так, что ∠bae = 30°, ∠bce = 75°. найти ∠cbe. желательно с чертежом и подробным объяснением. заранее .

Геометрия

Ответы

Ragim777hazarovich
∠AEC=180°-∠CAE-∠ACE=180°-(45°-30°)-(45°+75°)=45°
Проведем окружность с центром B и радиусом равным стороне квадрата. Т.к. ∠AEC=1/2∠ABC (т.е. ∠AEC равен половине центрального угла), то ∠AEC - вписанный, т.е. точка E лежит на окружности. Значит BC=BE как радиусы. Т.е. треугольник BCE - равнобедренный, и значит ∠CBE=180°-2·75°=30°.

Abcd - квадрат, вне которого взяли точку е так, что ∠bae = 30°, ∠bce = 75°. найти ∠cbe. желательно с
cherkashenko87543

1.1800 градусов

2.Площадь параллелограмма равна произведению его основания (a) на высоту (h):

S = a ⋅ h  

144 см² = а ⋅ 16 см  

a = 9 см

3.Из условия известно, что гипотенуза равна 13, а один из катетов 12. Для того, чтобы найти площадь прямоугольного треугольника будем использовать следующую формулу:

S = 1/2 * a * b, где a и b — катеты прямоугольного треугольника.

Давайте по теореме Пифагора найдем длину второго катета.

Квадрат гипотенузы равен сумме квадратов катетов.

a2 + b2 = c2;

122 + x2 = 132;

144 + x2 = 169;

x2 = 169 - 144;

x2 = 25;

x = 5.

Ищем площадь прямоугольного треугольника:

S = 1/2 * 12 * 5 = 30 кв. единиц.

ответ: 30 кв. единиц.

4.Площадь ромба можно найти по формуле S = 0,5d₁d₂, где d₁ и d₂ - его диагонали.Т.к. ромб - это параллелограмм, у которого все стороны равны, то он обладает всеми свойствами параллелограмма, а именно: диагонали ромба точкой пересечения делятся пополам. Значит, полусумма диагоналей равна 28 : 2 = 14 (см).Свойство ромба: диагонали ромба перпендикулярны. Значит, при пересечении диагоналей ромба получаются 4 прямоугольных треугольника, у которых катеты - половины диагоналей, а гипотенуза - сторона ромба.Рассмотрим один из прямоугольных треугольников и, применив теорему Пифагора, найдем его катеты.

Пусть один из катетов х см, тогда второй будет равен (14 - х) см. Т.к. сторона ромба равна 10 см, то составим и решим уравнение:

х² + (14 - х)² = 10²,

х² + 196 - 28х + х² - 100 = 0,

2х² - 28х + 96 = 0,

х² - 14х + 48 = 0.

D = (-14)² - 4 · 1 · 48 = 196 - 192 = 4; √4 = 2

х₁ = (14 + 2)/(2 · 1) = 16/2 = 8, х₂ = (14 - 2)/(2 · 1) = 12/2 = 6

Если один из катетов равен 8 см, то второй будет равен 14 - 8 = 6 (см). Тогда диагонали ромба будут равны 16 см и 12 см, а площадь

S = 0,5 · 16 · 12 = 96 (см²)

Если один из катетов равен 6 см, то второй будет равен 14 - 6 = 8 (см). Тогда диагонали ромба будут равны 12 см и 16 см, а площадь

S = 0,5 · 12 · 16 = 96 (см²)

ответ: 96 см².

Объяснение:

vladimir72tatarkov1317
1.  Из пучка прямых  α(2x+y -1) +β(2x -y +2) =0 выберите две взаимно перпендикулярные прямые.

α =β =1   ⇒4x +1 =0     ⇔ x = -1/4 .
α = - β =1⇒2y - 3/2 =0  ⇔ y  = 3 /2  .
* * * x = -1/4  и  y = 3/2  * * *
M₀(  -1/4 ; 3 /2)  центр пучка   прямых 
y -y₀ =k(x -x₀) ⇔y -3/2 =k*(x +1/4) . 
 Любые две прямые :  1)  y - 3/2 =k*(x +1/4)  и  2) y - 3/2 = (- 1/k)*(x +1/4) .
можно задавать например: 
a)  k = -2 ⇒ 2x+y -1 =0  и    4x -8y +13 =0 .
b) k = 2   ⇒ 2x -y +2 0  и      4x +8y -11= 0

2. Найдите каноническое уравнение прямой  : {x+y -2 = 0 ;y - z +1 =0 .

(x - x₁) / (x₂-x₁) = (y - y₁) / (y₂-y₁) = (z - z₁) / (z₂ - z₁) ;
Выбираем две точки :  M₁(1; 1; 2 ) ,  M₂(2; 0; 1 ) 
(x - 1) / (2 -1) = (y - 1) / (0 -1) = (z - 2) / (1 - 2) ⇔
(x - 1) / 1 = (y - 1) / (-1) = (z - 2) / ( -1) .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Abcd - квадрат, вне которого взяли точку е так, что ∠bae = 30°, ∠bce = 75°. найти ∠cbe. желательно с чертежом и подробным объяснением. заранее .
Ваше имя (никнейм)*
Email*
Комментарий*