Donleksa2016
?>

Сочинение по на тему: как я провел лето

Геометрия

Ответы

ev89036973460
Летние каникулы всегда приносят приятные впечатления. позади остались уроки, школьные звонки и переменки, а впереди – ожидание чего-то хорошего. вдвоем с сестрой мы ухаживаем за нашими овощами. на нашей зеленой грядке растут укроп, петрушка, щавель и редис. мы с удовольствием поливаем и пропалываем свою зеленую грядку. и приятно слышать от мамы за обедом следующие слова: " какой удивительно вкусный салат получился из ваших овощей! какие вы умнички, мои девочки! " летом времени достаточно: можно и с подружками погулять, и в гости съездить, и в разные игры поиграть. но больше всего я поездки на море с родителями. я наконец-то научилась плавать этим летом и рада этому. море мне нравится. оно настолько глубокое и широкое, и такое загадочное, что иногда даже пугает своей непредсказуемостью. море бывает одновременно близким и далеким, теплым и прохладным. а как приятно в летний жаркий день окунуться в свежую прохладную воду! и плавать, нырять, плескаться! я разложил на столе морские раковины. прикладывая их к уху, я различаю шум прибоя. и можно почувствовать силу морской волны, которая летит, и попадая на камень, выбрасывает мне в лицо множество ярких соленых брызг. мне весело, я смеюсь вместе со всеми: с родителями, морем, солнцем и чайками. лето пролетает стремительно, и уже снова приближается сентябрь. но это и неплохо, ведь совсем скоро я смогу увидеться со своими одноклассниками, поделиться со всеми друзьями и подружками своими летними впечатлениями. а еще хочется поскорее начать учиться, и вновь радовать своими успехами маму с папой.
Larisa Bulgakova
Сделаем построения и введём обозначения, как показано на рисунке. Пусть O — центр окружности, вписанной в треугольник ABC. Центр вписанной окружности — это точка пересечения биссектрис, поэтому — биссектрисы. Из прямоугольного треугольника AOK по теореме Пифагора найдём

Отрезки и OK равны как радиусы вписанной в треугольник ABC окружности, то есть Рассмотрим треугольники ALO и AOK, они прямоугольные, углы LAO и OAK равны, AO — общая, следовательно, треугольники равны, откуда Аналогично из равенства треугольников COM и COK получаем а из равенства треугольников BOL и BOM — Площадь треугольника ABC можно найти как произведение радиуса вписанной окружности на полупериметр:

Площадь параллелограмма равна произведению высоты на основание:

Рассмотрим треугольники ABC и ACD, AB равно CD, AD равно BC, углы ABC и ADC равны, следовательно, треугольники ABC и ACD равны. Поэтому площадь треугольника ABC равна половине площади параллелограмма:

Площадь параллелограмма равна:

ответ:
Впараллелограмме abcd проведена диагональ ac. точка o является центром окружности, вписанной в треуг
Ushakova Sakhno
Пусть F,E,G - точки касания исходной окружности с диагональю и сторонами параллелограмма  (см. рисунок). Пусть также H∈AD, OH⊥AD и L - точка пересечения ОH c окружностью.

1. Т.к. ∠OGA=∠OFA=∠OHA=90°, то все точки A,G,O,F,H лежат на одной окружности с диаметром AO.

2. Треугольник ABC подобен треугольнику HFG т.к. ∠GAF=∠GHF и ∠FGH=∠FAH=∠BCA по свойству вписанных углов.

3. L - центр окружности вписанной в HFG, т.к.:
a) ∠OHF=∠OHG (опираются на равные хорды),
б)∠GFL=∠OFL-∠OFG=(90°-∠FOL/2)-∠OFG=(90°-∠FAH/2)-∠OAG, ∠GFH=180°-2∠OAG-∠FAH, т.е. ∠GFL=∠GFH/2.
Из а) и б) следует, что L - точка пересечения биссектрис треугольника  HFG.

4. Из 2 и 3 следует, что в треугольнике ABC отрезку AO соответствует отрезок HL, т.е. коэффициент подобия ABC относительно HFG равен AO/HL=AO/(OH-OL)=25/(13-7)=25/6. Отсюда BC=GF*25/6.

5.  Из прямоугольного треугольника AOF получаем NF/OF=AF/AO, т.е. GF=2NF=2OF·AF/AO=(14√(25²-7²))/25=336/25. Тогда из 4 видим, что 
BC=(336/25)·(25/6)=56.

6. Высота параллелограмма ABCD равна EO+OH=7+13=20. Значит, площадь равна 20·BC=20*56=1120. 

P.S. Есть ощущение, что BC можно и проще найти, но... :))
Впараллелограмме abcd проведена диагональ ac. точка o является центром окружности, вписанной в треуг

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сочинение по на тему: как я провел лето
Ваше имя (никнейм)*
Email*
Комментарий*