Из условия задачи следует, что угол при основании треугольника АВС равен 30 град. Обозначим сторону равнобедренного треугольника через а, основание через b, радиус описанной окружности через R. Половина основания b/2=а*cos(30)=a*sqr(3)/2, b=a*sqr(3) Известно, что: R=a^2/sqr(4a^2-b^2) Подставив значение b, получим: R=a Отсюда: АВ=2 см Во второй задаче центр вписанной окружности совпадает с точкой пересечения биссектрис, поскольку радиусы опущенные из центра в точки М, Т и Р, образуют пары равных прямоугольных треугольников (ВОМ и ВОТ и т.д.). Четырехугольник РОТС является квадратом, так как радиусы проведены в точки касания и перпендикулярны катетам. По условия диагональ этого квадрата равна корень из 8, следовательно сторона будет в корень из двух раз меньше, отсюда: r=sqr(8/2)=2 Угол ТОР=90 град. Угол ТМР является вписанным, он измеряется половиной дуги, на которую опирается. Дуга составляет 90 градусов, так как ограничена точками Р и Т, а угол РСТ прямой. Следовательно угол ТМР=45 град.
николаевич-Елена988
06.01.2022
) Построение равнобедренного треугольника по основанию и боковой стороне. 1. Проводим прямую "а". 2. Замеряем циркулем длину данного нам основания. 3. Откладываем на прямой "а" от произвольной точки А отрезок АС, равный данному основанию. 3. Замеряем циркулем длину данной нам боковой стороны. 4. Устанавливаем ножку циркуля в точку А и радиусом, равным АВ, делаем дугу над прямой "а". 5. Устанавливаем ножку циркуля в точку С и радиусом, равным АВ, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В. 6. Соединяем точки А,В и с. Получен искомый треугольник. 2) Этот же алгоритм и для построения треугольника по трем сторонам. Только в пунктах 1,2 и 3 откладываем на прямой "а" ПЕРВУЮ сторону треугольника. В пункте 4 работаем со ВТОРОЙ стороной, то есть устанавливаем ножку циркуля в точку А и радиусом, равным длине ВТОРОЙ стороны, делаем дугу над прямой "а". В пункте 5 работаем с ТРЕТЬЕЙ стороной, то есть устанавливаем ножку циркуля в точку С и радиусом, равным длине ТРЕТЬЕЙ стороны, делаем дугу над прямой "а" до пересечения ее с первой дугой, получая точку пересечения В.