Данные треугольники имеют две пары равных углов ∡1 и ∡2, ∡3 и ∡4, каждый из которых прилежит к общей стороне АС треугольников. Значит, данные треугольники равны по второму признаку (сторона и два прилежащих угла).
№2У данных треугольников две пары равных сторон DC=AD и АВ=ВС. Также треугольники имеют общую сторону ВD, из чего делаем вывод: треугольники равны по третьему признаку (три стороны).
№3Указанные треугольники имеют равные стороны ОD=ОС и АО=ВО. Также имеем пару вертикальных углов ∡DOА и ∡ВОС. Они равны по своему свойству. Значит, треугольники равны по первому признаку (две стороны и угол между ними).
№4Из условия мы знаем, что АВ=АС (...отложены равные отрезки...) и ∡ВАD=∡CFD (биссектриса). Также АD - общая сторона. Значит, треугольники равны по двум сторонам и углу между ними.
Поделитесь своими знаниями, ответьте на вопрос:
Длина ребра основания правильной треугольной пирамиды равна 8, угол между боковой гранью и плоскостью основания равен 45. найти площадь боковой поверхности пирамиды
6см, 7см.
Объяснение:
Стороны подобных треугольников пропорциональны. Найдём коэффициент подобия, он равен отношению длин меньших сторон подобных треугольников. У первого треугольника меньшей является сторона с длиной 20 см, у второго - 5 см, тогда
k = 20/5 = 4.
Получили, что длины сторон первого трегольника в 4 раза больше соответствующих длин сторон второго треугольника, тогда
24 : 4 = 6 (см) - длина средней стороны второго треугольника,
28 : 4 = 7 (см) - длина большей стороны второго треугольника.
ответ: 6см, 7см.