1)квадрат диагонали в прямоугольном параллепипеде равен сумме квадратов измерений, тогда если диагональ обозначить через c, то составим уравнение? с в квадрате = 25 + 49 + 47 = 121 с = 11
2)найдем синус угла образованного диагональю с плоскостями оснований. по моему рисунку как будто у меня у параллепипеда высота равна 7. если у тебя высота параллепипеда равна 5 либо корню из 47, поменяй в моем решении числа местами. в общем на чертеже тебе надо провести проекцию диагонали - угол между ней и самой диагональю - тот самый. его синус равен высоте поделенной на диагональ (по теореме пифагора). итак: синус угла = 7 / 11. ответ: а) 11; б) 7/11.
АС=ВД=5,4см
Объяснение:
обозначим вершины прямоугольника ABCD с диагоналями АС и ВД а точку их пересечения О. Каждая диагональ делит прямоугольник на 2 равных прямоугольных треугольника АВС и АСД, в которых стороны прямоугольника являются катетами а диагонали гипотенузами. Обозначим пропорции 1:2 как х и 2х. Пусть <САД=х, а <ВАС=2х и зная, что диагональ делит прямой угол равный 90°, составим уравнение:
х+2х=90
3х=90
х=90÷3=30°.
Итак: <САД=30°, тогда катет СД, лежащий напротив него равен половине гипотенузы поэтому АС=2×2,7=5,4см
Так как диагонали прямоугольника равны, то АС=ВД=5,4см
Поделитесь своими знаниями, ответьте на вопрос:
Прямые a b лежат в пересекающихся плоскостях альфа и бетта. 1.могут ли эти прямые быть параллельными? 2.могут ли быть эти прямые скрещивающимися?
эти прямые могут быть параллельны только тогда, когда они обе параллельны линии пересечения плоскостей. если только одна из них не параллельна линии пересечения плоскочтей, то эти прямые скрещиваются. если обе не параллельны линии пересечения плоскостей и не имеют на этой линии общей точки, то они так же скрещиваются.