Через две точки можно провести только одну прямую и т.д.
Nadezhda Malakhov53
08.12.2022
Площадь треугольника равна половине произведения его сторон на синус угла между нимиДоказательство:Рассмотрим произвольный треугольник ABC. Пусть в нем сторона BC = a, сторона CA = b и S – площадь этого треугольника. Необходимо доказать, что S = (1/2)*a*b*sin(C).Для начала введем прямоугольную систему координат и поместим начало координат в точку С. Расположим нашу систему координат так, чтобы точка B лежала на положительном направлении оси Сх, а точка А имела бы положительную ординату.Если все выполнить правильно, то должен получится следующий рисунок.Площадь данного треугольника можно вычислить по следующей формуле: S = (1/2)*a*h, где h - это высота треугольника. В нашем случае высота треугольника h равна ординате точки А, то есть h = b*sin(C).Учитывая полученные результат, формулу площади треугольника можно переписать следующим образом: S = (1/2)*a*b*sin(C). Что и требовалось доказать.
marketing3
08.12.2022
Все мои буквы смотри на рисунке в приложении итак найдем АВ по тео Пифагора АВ²=6²+8²=100 АВ=√100=10 АО = ОВ т.к. точка О - это середина описанной окружности т.к треугольник АВС прямоугольный, а АВ - гипотинуза делаем вывод, что треугольник АОС и треугольник ВОС - равнобедренный, а это значит, что высота, проведенная к основанию, будет падать на середину основания найдем высоту АОС, чтобы найти SK 5²=4²+ОК² ОК²=9 OK=3 найдем SK²=OK²+SO² SK²=3²+4²=25 SK=5 найдем половину боковой грани SAC (эта половина есть треугольник SKC) она будет равна 10 значит вся грань 10*2=20 так же находим грань SBС ОM будет равна 4 SM будет равна 4√2 половина площади SBC = 6√2 вся грань 12√2 S ABC = 1/2 * 8 * 6 = 24 половина SAB = 1/2 * 4 * 5 = 10 вся SAB = 20 теперь просто складываем
S полное = 20 + 24 +12√2 + 20 = 64+12√2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны две различные точки.сколько можно провести через эти точки. прямых. лучей. кривых линий