Задача имеет два решения. 1) Биссектрисы углов A и D не пересекаются; 2) Биссектрисы углов А и D - пересекаются. Общим для обоих случаев является следующее: Биссектриса угла параллелограмма отсекает от него равнобедренный треугольник. Действительно, так как биссектриса угла А параллелограмме является и секущей при параллельных ВС и АD, то ∠ ВТА=∠ ТАD как накрестлежащий. Но ∠ ТАD=∠ ТАВ по условию, следовательно, ∠ВАТ=∠АТВ. Если в треугольнике два угла равны, то он равнобедренный. ∆ АВТ - равнобедренный. На том же основании и ∆ DEC равнобедренный. АВ=ВТ, ЕС=СD. Полное решение отдельно для каждого случая дано в приложении.
testovvanya
24.10.2021
Первый Пусть BK и CM — медианы треугольника ABC, O — их точка пересечения и AC > AB. Обозначим OM = x, OK = y. Тогда OC = 2x, OB = 2y. По теореме косинусов из треугольников MOB и KOC находим, что BM2 = x2 + 4y2 − 4xy cos ∠MOB, CK2 = 4x2 + y2 − 4xy cos ∠KOC. Поскольку BM = 1 2 AB, KC = 1 2 AC, то BM2 < KC2, или x2 + 4y2 < 4x2 + y2 (∠MOB = ∠KOC). Отсюда следует, что x > y. Поэтому CM = 3x > 3y = BK. Второй Пусть BK и CM — медианы треугольника ABC, O — их точка пересечения и AC > AB. Проведём медиану AN. В треугольниках ANB и ANC сторона AN — общая, BN = CN, а AB < AC, поэтому ∠ANB < ∠ANC (см. задачу 3606). В треугольниках ONB и ONC сторона ON — общая, BN = CN, а ∠ONB < ∠ONC, поэтому OB < OC. Следовательно, BK = 3 2 OB < 3 2 OC = CM.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямоугольник вписан в круг со сторонами 12 и 5 см. найдите площадь круга
р=34см
или же
р=12+5+12+5
р=34см