Если угол при основании 45 градусов, то прямоугольный треугольник, где высота трапеции стороной этого треугольника, а бедро трапеции гипотенузой - равнобедренный, так как второй угол этого прямоугольного треугольника тоже 90-45=45 градусов. Значит, кусочек нижнего основания трапеции, отсекаемый ее высотой равен тоже 3 см. Проведем вторую высоту трапеции, тогда получим, что высоты делят большое основание на три части - две по 3 см и одна - как малое основание 5 см. Следовательно, большое основание имеет размер 3+5+3=11 см.
mariya
14.12.2020
Внешняя точка - C, центр большой окружности - O пусть K - точка касания маленькой окружности и описанной в условии фигуры; ok ∩ mn = L проведем через неё касательную к обеим окружностям, пусть точки пересечения ей сторон угла MCN A и B. OK ⊥ AB по св-у касательной OK ⊥ MN, тк ol - биссектриса равнобедренного треугольника mon (равенство углов следует из равенства треугольников cmo и cno) таким образом ab || mn значит Δabc ~ Δamn по двум углам и Δabc - равносторонний (∠cmn = = ∠mnc = ∠cab = ∠cba = 60 (угол между касательной и хордой равен половине дуги заключенной между ними)) большая окружность - вневписанная для Δabc => cn = cm = полупериметру пусть сторона abc = a тогда cm = 1.5a ca / cm = 2 / 3 mn по теореме косинусов из Δmon = 18√3 ab = 2 mn / 3 = 12√3 = a осталось найти радиус вписанной окружности в равносторонний треугольник abc со стороной 12√3 S = p * r = a²√3 / 4 r = a^2 √3 / (4 * 1.5a) = a * √3 / 6 = 12 * 3 / 6 = 6 Длина окружности с радиусом 6 = 2π * 6 = 12π ответ: 12π
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вчетырехугольнике авсd проведена диагональ вd. угол свd равен углу аdв, угол авd равен углу вdc. докажите, что четырехугольник авсd-параллелограмм.