Вписанный угол РАвЕН половине центрального Значит центр.угол= 144°
romashka17-90
23.03.2021
Поскольку MP II AB; то ∠MPB = ∠PBA; а так как BP - биссектриса ∠ABC; то ∠MPB = ∠PBA = ∠PBC; следовательно, треугольник BMP равнобедренный, MB = MP; Если теперь вспомнить (именно в этот момент :) ), что точка M - центр окружности, описанной вокруг ABC, то есть MB = MC = MA; то это значит, что точка P тоже лежит на описанной окружности. Получается, что ∠ACP и ∠ABP оба вписанные в окружность, описанную вокруг треугольника ABC и опираются на дугу AP этой окружности. Поэтому они равны. Очевидно, что ∠ABP равен половине ∠ABC; поэтому ответ ∠ACP = 32,5°
ekkim310
23.03.2021
У колі з радіусами АО і ОВ пряма а проходить через середини радіусів так, що ОЕ = ОА/4. Оскільки відстань - це перпендикуляр, маємо прямокутний трикутник КОЕ та РОЕ. З прямокутного трикутника КОЕ: ОК = ОА/2, ОЕ = ОА/4. Тобто, катет ОЕ у два рази менший за гіпотенузу ОК. Катет, що дорівнює половині гіпотенузи, лежить проти кута 30 градусів. Тобто, кут ОКЕ = 30 градусів. Кут КОЕ = 90 - 30 = 60 градусів. Трикутники КОЕ та РОЕ рівні за прямим кутом та гіпотенузою, тобто кути КОЕ та РОЕ рівні і дорівнюють по 60 градусів. Кут АОВ = <KOE + <POE = 60 + 60 = 120 градусів.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вписанный угол равен 72°. найдите центральный угол, который опирается на ту же дугу.
Значит центр.угол= 144°