В условии, очевидно, ошибка: в прямоугольном параллелепипеде все грани прямоугольники, но тогда в прямоугольном треугольнике ABD гипотенуза (BD = 4 см) меньше катета (АD = 6 см).
Вероятно, в задаче дан прямой параллелепипед. Тогда его основания - параллелограммы, а боковые грани - прямоугольники. Решим задачу для прямого параллелепипеда.
Итак, в основании параллелограмм, в котором
АВ = CD = 3 см,
BC = AD = 6 см,
BD = 4 см - меньшая диагональ параллелограмма.
Сумма квадратов диагоналей параллелограмма равна сумме квадратов всех его сторон:
AC² + BD² = 2(AB² + AD²)
AC² = 2(AB² + AD²) - BD² = 2(9 + 36) - 16 = 90 - 16 = 74
AC = √74 см
B₁D - меньшая диагональ параллелепипеда (так как ее проекция меньше).
ΔBB₁D: ∠B₁BD = 90°,
tg∠BDB₁ = BB₁ / BD
BB₁ = BD · tg60° = 4 · √3 = 4√3 см
АА₁ = ВВ₁ = 4√3 см
ΔAA₁C: ∠A₁AC = 90°, по теореме Пифагора
A₁C = √(AA₁² + AC²) = √(48 + 74) = √122 см
Найдите углы равнобедренного треугольника, если один из его углов в пять раз меньше суммы двух других.
============================================================
Пусть ∠А = ∠С = х , ∠В = у, тогдаРассмотрим 2 случая решения данной задачи:Первый случай:∠В = ( ∠А + ∠С )/5у = 2х/5Сумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180°х + 2х/5 + х = 18х°12х/5 = 180°х = 75°Значит, ∠А = ∠С = 75° , ∠В = 30°Второй случай:∠А = ( ∠В + ∠С )/5х = ( у + х )/55х = у + ху = 4хСумма всех углов в треугольнике составляет 180° ⇒∠А + ∠В + ∠С = 180х + 4х + х = 180°6х = 180°х = 30°Значит, ∠А = ∠С = 30° , ∠В = 120°ОТВЕТ: 30°, 75°, 75° ИЛИ 30°, 30°, 120°Поделитесь своими знаниями, ответьте на вопрос:
Найдите углы четырехугольника abcd вписанного в окружность если угол acb =36°; угол abd=48°; угол bac=85°
углB+углC=180гр. значит углB=180-121=59гр.
ответ:углA=углC=121гр.
углB=углD=59гр.