Втетраэдре sabc на ребре ab выбрана точка k так, что ak: kb = 1: 2. через точку k параллельно прямым bc и as проведена плоскость. постройте сечение и вычислите его периметр, если bc=6 см и as=9 см.
Противоположные стороны сечения параллельны ребрам тетраэдра попарно: КР и МN параллельны ВС, МК и NP параллельны SA. ⇒ КМNP- параллелограмм. Его противоположные стороны равны. Чтобы найти их, рассмотрим треугольники граней. В ∆ АВС отрезок КР║ВС, Пусть АК=а. ВК=2а, ⇒ АВ=3а. Так как КР║ВС, ∆ АКР~∆АВС, k=AB:АК=3:1 ⇒ КР=ВС:3=2 см.
В ∆ АSВ отрезок МК║ЅА, ∆ МВК~∆ АВЅ, k=ЅМ:ВМ=АB:ВК=3:2 ⇒ МК=9•2/3=6 см.
МM=KP и МК=NP. ⇒ Р( КМNP)=2•(2+6)=16 см
matveevaev81
19.04.2020
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.
Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
PS построения не сложные. - прямая, 2 точки на ней, одна точка вне прямой и два отрезка, соединяющие эту точку с точками на прямой..))) Но, если очень надо, - то файлик внизу с рисунком..)) И еще. Упоминание о том, что все это происходит на плоскости, - желательно. Дело в том, что всем нам с детства знакомы меридианы на географической сетке Земного шара. Так вот каждый меридиан перпендикулярен экватору, и все меридианы сходятся аж в двух точках : в Северном и Южном полюсах
Павловна897
19.04.2020
ВАС=90 Т.к. угол ВАС делится на 3 равные части, то угол ВДА= углу ДАЕ= углу ЕАС=30. Треугольник ВДА подобен ВАС по двум углам: ДВА=АВС, угол ВДА=ВАС=90 , => угол ВСА= ДАВ=30 =>треугольник АЕС= равнобедренный , АЕ=АС Треугольник ВДА= ЕДА по двум углам и стороне, ДА- общая, угол ВДА=ЕДА, угол ВАД=ЕАД. =>ВД=ДЕ обозначим ДЕ за х, тогда ВД=х, ЕС=2х, ЕА=2х S треугольника ЕДА =(1/2)*ЕД*ДА=(1/2)*х*2х*cos30 (х^2)*(sqrt{3}/2)=2/sqrt{3} х=2/sqrt{3} (1/2)АС=АЕ*cos30=(4/sqrt{3})*(sqrt{3}/2)=2 => AC=4 ВА=ВС*cos60=4x*(1/2)=(8/sqrt{3})*(1/2)=4/sqrt{3} S треугольника АВС =(1/2)*АВ*АС=8/sqrt{3} р (полупериметр)=(6+2sqrt{3})/sqrt{3} r=S/p r=8/(6+2sqrt{3})=4/(3+sqrt{3}) S круга=п*r^2=(16п)/((3+sqrt{3})^2)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Втетраэдре sabc на ребре ab выбрана точка k так, что ak: kb = 1: 2. через точку k параллельно прямым bc и as проведена плоскость. постройте сечение и вычислите его периметр, если bc=6 см и as=9 см.
Противоположные стороны сечения параллельны ребрам тетраэдра попарно: КР и МN параллельны ВС, МК и NP параллельны SA. ⇒ КМNP- параллелограмм. Его противоположные стороны равны. Чтобы найти их, рассмотрим треугольники граней. В ∆ АВС отрезок КР║ВС, Пусть АК=а. ВК=2а, ⇒ АВ=3а. Так как КР║ВС, ∆ АКР~∆АВС, k=AB:АК=3:1 ⇒ КР=ВС:3=2 см.
В ∆ АSВ отрезок МК║ЅА, ∆ МВК~∆ АВЅ, k=ЅМ:ВМ=АB:ВК=3:2 ⇒ МК=9•2/3=6 см.
МM=KP и МК=NP. ⇒ Р( КМNP)=2•(2+6)=16 см