elenaneretina
?>

Стороны прямоугольника равны 8 см и 12 см. найдите его диагональ

Геометрия

Ответы

shmidt

диагональ делит прямоугольник на 2 равных прямоугольных треугольников

рассмотрим один из этих треугольников

по теореме пифагора

сумма квадратов катетов равна квадрату гепотенузы

8(в квадрате)+12(в квадрате)=64+144=208

 

 гепотенуза равна \sqrt{208} = 4\sqrt{13}

ОТВЕТ 4\sqrt{13}

Anna389

СМ : МК : КА = 2 : 3 : 2, т.е. СМ - две одинаковые части, МК - три такие же части, а КА - 2 части. Тогда

СМ : СК : СА = 2 : 5 : 7

Если прямая параллельна стороне треугольника, то она отсекает треугольник, подобный данному, значит

ΔМСТ  подобен ΔАСВ и коэффициент подобия равен:

k₁ = CM : CA = 2 : 7

Площади подобных треугольников относятся как квадрат коэффициента подобия:

Smct : Sabc = 4 : 49

Smct = 4 · 98 / 49 = 8 см²

ΔКСР подобен ΔАСВ,

k₂ = CK : CA = 5 : 7

Skcp : Sacb = 25 : 49

Skcp = 25 · 98 / 49 = 50 см²

Skmtp = Skcp - Smct = 50 - 8 = 42 см²

Sakpb = Sacb - Skcp = 98 - 50 = 48 см²

tatianamatsimoh
Пусть трапеция будет ABCD,AB=2,3 см; DC = 7,1 см;  <C=45*. Проведем высоту BH, параллельную AD. Рассмотрим четырехугольник ABHD. Он - прямоугольник по признаку, так как <A,<D,<H - прямые. Имеем, что AB = DH = 2,3 см.Получаем, что  НС = DC - AB = 7,1 - 2,3 = 4,8 (см) - из аксиомы 3.1.
 В треугольнике HBC <B = 45* из теоремы о сумме углов треугольника. Значит, так как <B = <C, то по признаку равнобедренного треугольника HBC - равнобедренный. Отсюда следует, что HB=HC = 4,8 см
ответ: 4,8 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Стороны прямоугольника равны 8 см и 12 см. найдите его диагональ
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ariyskayaa5
komplekt7
abramovae
mashumi2170
lion13
rvvrps
vlrkinn
o-kate17
Пимкина Сергеевич
monenko
vasavto1
metelkin7338
chernovol1985255
ПетросовичЗаславский
tkozina