S1 ≈ 19,8 cм².
S2 ≈ 3,9 cм².
Объяснение:
По теореме косинусов в треугольнике АВС:
АВ² = ВС² + АС² - 2·ВС·АС·Сos30 =>
25 = 64 + AC² - (8√3)·AC =>
Решаем квадратное уравнение AC² - (8√3)·AC +39 = 0 и =>
AC1 = 4√3+3 ≈ 9,9 см.
АС2 = 4√3-3 ≈ 3,9 см.
По теореме синусов в треугольнике АВС:
5/Sin30 = 2R => R = 5·2/2 = 5 см.
R = a·b·c/(4·S) =>
S1 = a·b·c/(4·R) ≈ (5·8·9,9)/20 = 19,8 cм².
S2 = a·b·c/(4·R) ≈ (5·8·3,9)/20 = 7,8 cм²
P.S. Для проверки на рисунке выполнено точное построение, доказывающее, что задача имеет два решения.
Центр вписанной окружности является точкой пересечения биссектрис углов трапеции.
1) ∠ADC+∠BCD=180º (как сумма внутренних односторонних углов при параллельных прямых AD и BC и секущей CD);
2) так как точка O — точка пересечения биссектрис углов трапеции, то ∠ODF+∠OCF=1/2∙(∠ADC+∠BCD)=90º;
3) так как сумма углов треугольника равна 180º, то в треугольнике COD ∠COD=90º;
4) таким образом, треугольник COD прямоугольный, а OF — высота, проведенная к гипотенузе, CF и FD — проекции катета OC и OD на гипотенузу.
5) треугольник СОD (по теореме Пифагора):
CD^2 = CO^2 + OD^2
CD = корень [CO^2 + OD^2] = корень [3^2 + 4^2] = 5
6) Обозначим CF = m
тогда FD = 5-m
OF = r (радиус)
Треугольник СFО (по теореме Пифагора):
r^2 + m^2 = OC^2
r^2 + m^2 = 3^2
откуда r^2 = 9 - m^2
7) Треугольник ОFD (по теореме Пифагора):
r^2 + (5-m)^2 = OD^2
r^2 + (5-m)^2 = 4^2
Подставим из 6):
9 - m^2 + (5-m)^2 = 4^2
9 - m^2 + 5^2 - 2*5*m + m^2 = 4^2
9 + 25 - 10m = 16
10m = 18
m = 1.8
8) Подставим результат в 6):
r^2 = 9 - m^2 = 9 - 1,8^2 = 5,76
9) площадь круга S = П*r^2 = 5,76П ~ 18,096
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник abc= треугольнику mep, угол e=45 градусов. найдите угол b.