stanefimov
?>

Найди периметр равнобедренного треугольника, две стороны которога равны 15 см и 10 см. расмотрите все возможные случаи

Геометрия

Ответы

serzhs869
В равнобедренном треугольнике две боковые стороны равны. Т.к. Данные нам числа разные значит одно это длина основания, а другое это длина боковой стороны.
Получается два случая
1)Боковые стороны по 15см, а основание 10.
15x2+10=40
2)Боковые стороны по 10, а основание 15.
10x2+15=35.
mereninka7008
Точка К, из которой будет виден отрезок МN под наибольшим углом, будет находиться на общей окружности с точками М и N. При этом OK для неё является касательной.
По свойству касательной и секущей ОК²=ОМ·ОN.
Пусть ОМ=х, тогда ОN=OM+MN=x+6,
4²=x(х+6),
х²+6х-4=0,
х1=-8, отрицательное значение не подходит,
х2=2.
ON=2+6=8 дм - это ответ.

Теперь докажем, что отрезок  MN виден из точки К под большим углом.
Пусть радиус окружности около тр-ка КMN равен r.
На стороне ОК в любом месте возьмём точку Р и опишем окружность около тр-ка РMN, радиусом R. ОР для неё является секущей, а для окружности, радиусом r - касательной, значит R>r.
Формула хорды: l=2R·sin(x/2), где х - градусная мера хорды.
∠MKN=α, ∠MPN=β.
Обратим внимание, что углы α и β - это половина градусной меры хорды.
MN=2R·sinβ ⇒ sinβ=MN/2R.
MN=2r·sinα ⇒ sinα=MN/2r.
Сравним синусы, предположив, что они равны.
MN/2R=MN/2r.
1/R=1/r, но R>r, значит 1/R<1/r, значит sinβ<sinα.
Так как градусная мера хорды не может быть больше 180°, значит в формуле хорды 0°<α<90°, 0°<β<90°.
В этом диапазоне синус угла тем больше, чем больше его градусная мера,
значит α>β.
Доказано.
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
Решить на одной из сторон острого угла с вершиной о отмечены точки м и n ( м лежит между о и n). на
karavan85450
Пусть острый угол равен 2β
тогда
∠САД = ∠САБ = β
∠АСД = 90°-β
∠БСА = 90° - ∠АСД = 90° - (90°-β) = β
Треугольник АБС равнобедренный :)
Высота трапеции h, тогда
h = 9*tg(β)
h = 5*sin(2β)
---
h² = 81*sin²(β)/cos²(β)
h² = 25*4*sin²(β)*cos²(β)
---
81*sin²(β)/cos²(β) = 100*sin²(β)*cos²(β)
81/100 = cos⁴(β)
Извлекаем корень
положительный
cos²(β) = +9/10
Это хорошо, позже будем решать дальше
cos²(β) = -9/10
Это плохо, дальше не развиваем
cos²(β) = 9/10
sin²(β) = 1-cos²(β) = 1-9/10 = 1/10
h² = 100*sin²(β)*cos²(β)
h² = 100*1/10*9/10
h² = 9
h = 3 (снова отбросили отрицательный корень)
Ну и площадь
S = 1/2(9+5)*3 = 21 см²
Найдите площадь прямоугольной трапеции, если ее основания равны 5 см и 9 см, а диагональ делит ее ос

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найди периметр равнобедренного треугольника, две стороны которога равны 15 см и 10 см. расмотрите все возможные случаи
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ooo-helpvet44
Azarenkoff
Тоноян
sklad2445
Аврамец1911
dumpler
ksvish2012
teta63
MaratФам
verynzik66525
korotaeva778898
info126
bogatskayaa
martinson
dksvetlydir