∠A=∠D=74°
∠B=∠C=106°
Объяснение:
Дано: Окр.О
ABCD - вписанная трапеция.
∠АКВ=32°
О∈AD
Найти: углы трапеции.
1) ABCD - равнобедренная трапеция (вписанная)
∠АКВ=(∪AB+∪CD):2 (угол между пересекающимися хордами)
∪AB=∪CD (равными хордами стягиваются равные дуги)
32°=(∪AB+∪CD):2
2∪АВ=64° ⇒ ∪АВ=∪CD=32°
2) ∠ABD=90° (вписанный, опирается на диаметр)
∠DBC=∪CD:2=32°:2=16° (вписанный)
⇒∠B=∠ABD+∠DBC=90°+16°=106°
3) ∠A=180°-∠B=180°-106°=74° (внутренние односторонние при BC║AD и секущей АВ)
4) Углы при основаниях равнобедренной трапеции равны.
∠A=∠D=74°
∠B=∠C=106°
Поделитесь своими знаниями, ответьте на вопрос:
Втрапеции abcd основание вс перпендикулярно боковой стороне ав, угол cad равен 30°, диагональ ас перпендикулярна стороне cd, равной 6 см. найдите длину основания вс.
поскольку угол Д-60гр., то угол САД равен 30 градусов (180-90-60),
известно, что катет лежащий против угла в 30 гр,равен половине гипотенузы, т.е АД.
Далее, расмотрим треугольник АВС- он равносторонний, поскольку углы САД и ВСА равны, и углы САД и САВ тоже равны, поскольку АС- биссектриса.
Отсюда ясно, что верхнее основание и боковые стороны равны- обозначим их Х
А нижнее основание будет 2Х.
Тогда систавин и решим уравнение
35= Х+Х+Х+2Х= 5Х
Х= 7