1. Рассмотрим 3-ки NPM и RPQ:
<MNP = <PQR (по усл.)
NP = PQ (по усл.)
<NPM = <RPQ (вертикальные)
След-но,
тр. NPM = тр. RPQ (по стороне и двум прилежащим к ней углам)
21. Тр. CDE — равнобедренный (CD = DE)
значит,
<FCD = <HED
2. Рассмотрим 3-ки CFD и EHD:
CD = ED (по усл.)
<CDF = <EDH (по усл.)
<FCD = <HED (по доказанному)
След-но,
тр. CFD = тр EHD (по стороне и двум прилежащим углам)
31. Рассмотрим 3-ки QOR и POR:
RO — общая
<QOR = <POR (по усл.)
QO = PO(по усл.)
След-но,
тр QOR = тр POR (по двум сторонам и углу между ними)
41. <ВАС = <ВСА (по усл.), значит:
тр. АВС — равнобедренный (АВ = ВС)
2. <КАВ = 180 - <ВАС (смежные)
<NCB = 180 - <BCA (смежные)
т.к. <ВСА = <ВАС, то:
<КАВ = <NCB
3. Рассмотрим 3-ки КАВ и NCB:
KA=CN (по усл)
AB = BC (по доказанному)
<КАВ = <NCB(по доказанному)
След-но, тр. КАВ = тр NCB (по двум сторонам и углу между ними)
51. <А = <D (накрест лежащие при прямых АС и ЕD и секущей АD)
значит,
АС || ED
2. Т. к. АС || ED, то:
<С = <Е
3. <АВС = <DBE (вертикальные)
4. Рассмотрим 3-ки АВС и DBE:
Против равных углов лежат равные стороны, значит:
AB = BD
CB = BE
ED = AC
След-но,
тр АВС = тр DBE (по трем сторонам)
61. Рассмотрим 3-ки ADB и ВСD:
BD — общая
<АDB = <CBD (по усл)
<ABD = <BDC (по усл)
След-но,
тр ABD = тр BCD (по стороне и прилежащим к ней углам)
Объяснение:
Рассмотрим △AOD и △BOC. У них OD=OB+BD, OC=OA+AC. По условию OA=OB, AC=BD, значит и OD=OC. Угол COD у них общий, а стороны OB=OA, значит △AOD=△BOC по 1му признаку. => <ODA=<OCB
Рассмотрим △DEB и △CEA. У них <DEB=<CEA как верт., <BDA=<ACB из равенства тр-ков, выше. Значит и оставшиеся углы <EBD=EAC. По условию BD=AC, значит △DEB=△CEA по 2му признаку. =>EB=EA
Рассмотрим △EBO и △EAO. EB=EA, OB=OA, а OE - общая, значит △EBO=△EAO по 3му признаку. => <BOE=<AOE, то есть OE - биссектриса угла XOY
Насчёт вопроса как построить - я думаю так: берём угол и откладываем от его вершины 2 равных (для удобства) отрезка на одном и луче и такие же два равных на другом. Соединяем конец большого отрезка на одном луче с серединой такого же отрезка на другом. И также с другим отрезком. Место их пересечения - точку соединяем с вершиной угла и получится биссектриса. Собственно всё как на этом рисунке, только я предлагаю все отрезки сделать равными.
Поделитесь своими знаниями, ответьте на вопрос:
Диагонали прямоугольника abcd пересекаются в точке о. докажите что oa = ob = oc = od