oslopovavera
?>

Плоский угол при вершине правильной шестиугольной пирамиды равен 30°, длина бокового ребра равна a. найти площадь боковой поверхности пирамиды.

Геометрия

Ответы

ann-perminova2008
Площадь боковой поверхности пирамиды= сумме площадей боковых граней - равнобедренных треугольников (по условию правильная пирамида)
SΔ=(a*a*sin30°)/2
S_{treug} = \frac{a*a}{2} * \frac{1}{2} = \frac{ a^{2} }{4}
S бок.пов. =SΔ*6
S_{bok.pov} = \frac{ a^{2} }{4} *6= \frac{6 a^{2} }{4} =1,5 a^{2}

ответ: S бок.пов=1,5a²
Dampil
1) Находим углы по теореме косинусов и площадь по теореме Герона:
a      b      c       p       2p            S
4      8     5      8.5    17         8.18153                 
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
cos A = 0.9125
cos В= (АВ²+ВС²-АС²) / (2*АВ*ВС)
 cos B = -0.575         
cos C= (АC²+ВС²-АD²) / (2*АC*ВС)
cos С = 0.859375
Аrad = 0.421442    Brad = 2.1834          Сrad = 0.53675
Аgr = 24.14685      Bgr = 125.0996        Сgr = 30.75352.

2) Длины высот:
АА₂ = 2S / BС   = 4.090767 
BB₂ = 2S  / АС = 2.04538
CC₂ = 2S / ВА = 3.272614. 

3) Длины медиан:
Медиана, соединяющая вершину  треугольника А с серединой стороны а равна ma= \frac{1}{2} \sqrt{2b^2+2c^2-a^2}
 a     b      c
4     8       5
ма                  мв                     мс
6.364         2.12132           5.80948

4) Длины биссектрис:
Биссектриса угла А выражается:
L_c= \frac{2 \sqrt{abp(p-c)} }{a+b}
a       b       c
4      8        5
     βa               βb                 βc  
6.0177       2.04879        5.14242.

Деление сторон биссектрисами:
                a                                    b                               c
      ВК             КС                АЕ        ЕС               АМ           МВ
1.53847    2.46154       4.4444     3.5556       3.333      1.6667.
 Деление биссктрис точкой пересечения
                  βa                           βb                           βc  
     АО              ОК           ВО        ОЕ           СО             ОМ
4.601799 1.41593 1.08465    0.96413   3.62994     1.512475
Отношение отрезков биссектрис от точки пересечения:
АО/ОК                 ВО/ОЕ              СО/ОМ
3.25                      1.125                    2.4

5)  Радиус вписанной в треугольник окружности равен:
r= \sqrt{ \frac{(p-a)(p-b)(p-c)}{p} }
r = 0.9625334.

Расстояние от угла до точки касания окружности:
АК=АМ         BК=BЕ           CМ=CЕ
    4.5                0.5                   3.5

6)  Радиус описанной окружности треугольника, (R):
R= \frac{abc}{4 \sqrt{p(p-a)(p-b)(p-c)} }
R = 4.889058651.
Решите треугольник авс если: ав=5м,ас=8м,вс=4м
Яковчук1911
Решение:
h=a√3 / 2 (Высота правильного треугольника)
h1=4√3(Высота большего основания)
h2=2√3(Высота меньшего основания)
Высота в правильной треугольной усеченной пирамиде делит высоты оснований
в отношении 1 к 3.
Рассмотрим трапецию, большее основание которой равняется 1/3 высоты большего
основания пирамиды, а меньшее основание равняется 1/3 высоты меньшего основания пирамиды. 
Две другие стороны трапеции являются высотой усеченной пирамиды и высотой боковой грани.
Рассмотрим элемент трапеции - прямоугольный треугольник.
Меньший катет которого равен:
4√3/3 - 2√3 /3 = 2√3/3 (Разность оснований)
Итак, теперь мы можем найти высоту:
tg60= 3H/2√3
H=2
ответ H=2 см

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Плоский угол при вершине правильной шестиугольной пирамиды равен 30°, длина бокового ребра равна a. найти площадь боковой поверхности пирамиды.
Ваше имя (никнейм)*
Email*
Комментарий*