Образующая конуса наклонена к плоскости основания под углом 30°.
Плоскость сечения образована сторонами, равными образующей, и угол между ними 60°
Плоскость сечения - правильный треугольник.
Треугольник, образованный образующей, радиусом конуса и его высотой - половина правильного треугольника.
Высота - катет этого треугольника и равна половине образующей.
Второй катет равен радиусу основания и, как высота правильного треугольника
( можно и по теореме ПИфагора найти), равен (а√3):2=(L√3):2
(L√3):2=6
L√3=12 см
L=12:√3=12√3:√3*√3=12√3:3=4√3 см
Как уже сказано, плоскость сечения - равносторонний треугольник.
Формула площади равностороннего треугольника
S=(a²√3):4
S=(L√3)²√3:4=S=(16 *3)√3:4=48√3:4
S= 12√3 cм²
Поделитесь своими знаниями, ответьте на вопрос:
Что можно написать про площадь трапеции, прямоугольника и параллелограмма?
•произведению полсуммы оснований на высоту;
•прозведенмю средней линии на высоту.
Площадь прямоугольника равна произведению его смежных сторон.
Площадь параллелограмма равна произведению стороны на высоту, проведённой на эту сторону, либо произведению его смежных сторон на синус угла между ними.