Треугольники АСД и АВС равнобедренные по условию. ∠ВСА=∠САД как накрест лежащие при параллельных АД и ВС и секущей АС, значит углы при основаниях в тр-ках АВС и АСД равны. ВМ⊥АС, СК⊥АД. Пусть ∠ВАС=α, ВС=х, АС=у, тогда АМ=у/2, АД=ВС+СД=х+у. В тр-ке АВМ АМ=АВ·cosα или у/2=х·cosα ⇒ y=2x·cosα. В тр-ке АСК АК=АС·cosα или (х+у)/2=у·cosα, (x+2x·cosα)/2=2x·cos²α, x+2x·cosα=4x·cos²α, x сокращается, 4cos²α-2cosα-1=0, решаем как квадратное уравнение с неизвестным cosα ⇒⇒ cosα₁=(1-√5)/4, -1<х<0 - угол тупой cosα₂=(1+√5)/4, α=arccos(1+√5)/4=36°. В трапеции АВСД: ∠А=2α=72°, ∠В=180-∠А=108°, ∠Д=α=36°, ∠С=180-∠Д=144° - это ответ.
hamelleon43
05.02.2022
Треугольники АСД и АВС равнобедренные по условию. ∠ВСА=∠САД как накрест лежащие при параллельных АД и ВС и секущей АС, значит углы при основаниях в тр-ках АВС и АСД равны. ВМ⊥АС, СК⊥АД. Пусть ∠ВАС=α, ВС=х, АС=у, тогда АМ=у/2, АД=ВС+СД=х+у. В тр-ке АВМ АМ=АВ·cosα или у/2=х·cosα ⇒ y=2x·cosα. В тр-ке АСК АК=АС·cosα или (х+у)/2=у·cosα, (x+2x·cosα)/2=2x·cos²α, x+2x·cosα=4x·cos²α, x сокращается, 4cos²α-2cosα-1=0, решаем как квадратное уравнение с неизвестным cosα ⇒⇒ cosα₁=(1-√5)/4, -1<х<0 - угол тупой cosα₂=(1+√5)/4, α=arccos(1+√5)/4=36°. В трапеции АВСД: ∠А=2α=72°, ∠В=180-∠А=108°, ∠Д=α=36°, ∠С=180-∠Д=144° - это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Высота конуса равна 6см, угол при вершине осевого сечения равен 120градусов, найдите: площадь боковой поверхности конуса
S=π*6√3*12=72π√3