Попова1271
?>

Напишите уравнение окружности с центром в точке d (5; 5) и радиусом 4

Геометрия

Ответы

ev89036973460
Уравнение окружности имеет вид:
(x - a)² + (y - b)² = r², где (a; b) - координаты центра, r - радиус окружности. Тогда данное уравнение окружности будет иметь вид (х - 5)² + (у - 5)² = 16.
kosbart28
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
diana-kampoteks
АВ=ВС, т.к. треугольник равнобедренный, а АС - основание. 
ВК=2, АК=8, тогда, АВ=10.
Центр вписанной окружности лежит в точке пересечения биссектрис треугольника, проведём биссектрису ВН: точка Н совпадёт с точкой касания окружности на стороне АС, т.к. в биссектриса, проведённая из угла В, является и высотой, и медианой, т.е. угол АНС = 90 градусов. 
АН=АК, т.к. отрезки касательных, проведённых из одной точки, равны, т.е. АН=8, тогда АС=16. 
В прямоугольном треугольнике АВН АВ=10, АН=8, тогда по теореме Пифагора ВН=6. 
Найдём площадь треугольника: 1/2 * АС * ВН = 1/2 * 16 * 6 = 42.
Вравнобедренный треугольник abc с основанием ас вписана окружность, которая касается боковой стороны

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Напишите уравнение окружности с центром в точке d (5; 5) и радиусом 4
Ваше имя (никнейм)*
Email*
Комментарий*