Taniagrachev
?>

Периметр квадрата равен 132.найдите площадь квадрата

Геометрия

Ответы

bikemaster
Решение:
Площадь квадрата находится по формуле а²-где а- сторона квадрата
Периметр квадрата находится по формуле: 
Р=4а, отсюда а равно:
а=132:4=33
S=33²=1089

ответ: 1089
avdushinalizza1
132:4=33
33×33=1089
Вот так
asvirskiy26

ответ: стороны треугольника 13; 14; 15

Объяснение: проведенные отрезки - это биссектрисы данного треугольника (центр вписанной окружности - точка пересечения биссектрис треугольника);

получившиеся треугольники имеют равные высоты - это радиус вписанной окружности (любая точка биссектрисы угла равноудалена от сторон угла; радиус, проведенный в точку касания перпендикулярен касательной)

площади треугольников, имеющих равные высоты относятся как основания; получим отношения сторон треугольника (для определенности обозначим сторону (а) у треугольника с площадью 30; сторона (b) у треугольника площадью 28; (с) для площади 26):

а/b = 30/28 = 15/14

a/c = 30/26 = 15/13

b/c = 28/26 = 14/13

можно записать три стороны:

a = 15c/13; b = 14c/13 и с.

площадь всего треугольника = 30+28+26 = 84 и она связана со сторонами по формуле Герона)

полупериметр = ((15/13)+(14/13)+1)*(c/2) = 21c/13

84 = корень из((21с/13)*(6c/13)*(7c/13)*(8c/13))

84 = 7*3*4*c^2/169

c^2 = 169

c = 13

b = 14

a = 15

Titeeva-Vladimirovich283
Из условия: 
1) основание - квадрат
2) проекция стороны на основание -прямоугольный треугольник
3) в разрезе пирамиды по углам и вершине тоже треугольник

решение:
треугольник с вершинами 1. вершина пирамиды 2.угол основания 3.нижняя точка высоты (центр основания) прямоугольный - угол 60 градусов, катет 4 см - второй катет 4/ tg60°
проекция стороны на основание - прямоугольный треугольник - равнобедренный - катет 4/ tg60, а гипотенуза будет (4/ tg60°) / sin 45° (в прямоугольном равнобедренном треугольнике углы при гипотенузе равны  по 45 градусов )
это и будет ответом - (4/ tg60°) / sin 45°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Периметр квадрата равен 132.найдите площадь квадрата
Ваше имя (никнейм)*
Email*
Комментарий*