Это задача на наименьшее(наибольшее) значение функции.Принцип решения: а) ввести х б) остальные неизвестные величины выразить через х в) составить формулу функции, минимальное( максимальное ) значение которой в задаче имеется. г) исследовaть её на min (max) Пусть разговор идёт про точку М. Её координаты буду х и (6 - х) Расстoяние от начала координат =|ОМ|. Именно ОМ должно быть минимальным. ОМ является функцией от х. Надо ОМ найти. Будем искать по т.Пифагора. ОМ² = х² + (6 - х)² ⇒ ОМ = √(х² + 36 -12х +х²) = √(2х² -12х + 36) Значит, у = √(2х² -12х + 36) Проведём исследование этой функции на min Производная = 1/2√(2х² -12х + 36) · ( 4х - 12) Приравниваем её к нулю. Ищем критические точки 1/2√(2х² -12х + 36) · ( 4х - 12) = 0⇒ 4х - 12 = 0⇒ 4х = 12⇒х = 3 (2х² -12х + 36≠0) -∞ - 3 + +∞ Смотрим знаки производной слева от 3 и справа Производная меняет свой знак с " - " на " + " ⇒ х = 3 - это точка минимума. ответ: точка М имеет координаты (3;3), ОМ = √(9 + 9) = √18 = 3√2
Korikm
24.02.2023
Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На листе начертили две параллельные прямые.сколько получиться частей, если разрезать лист по этим двум прямым?