dvpered
?>

Выразите сторону, периметр и площадь правильного треугольника: а) через радиус вписанной окружности; б) через радиус описанной окружности

Геометрия

Ответы

Radikovnanikolaeva

а) радиус вписанной в правильный треугольник окружности:

r = a√3 / 6, отсюда

a = 6r / √3 = 2√3r

P = 3a = 6√3r

S = a²√3 / 4 = 4 · 3 · r² · √3 / 4 = 3√3r²

б) Радиус описанной около правильного треугольника окружности:

R = a√3/3

a = 3R / √3 = R√3

P = 3a = 3√3R

S = a²√3 / 4 = 3R²√3 / 4

info36

Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:

<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)

Дано:

а=4, b=5, c=6.

Найти: a, b, y -?

Пусть b - наибольшая сторона, b<a+c.

По теореме косинусов находим наибольший угол b,

[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]

{b}^{2} = {a}^{2} + {c}^{2} - 2ac \times cos \beta

\cos\beta = \frac{a {}^{2} + c {}^{2} - b {}^{2} }{2ac} = \frac{16 + 36 - 25}{48} = 0,5625 = \\ = \frac{9}{16}

При основного тригонометрического тождества найдём Sin B

sin {}^{2} \beta + cos {}^{2} \beta = 1 \\ sin {}^{2} \beta = 1 - cos {}^{2} \beta \\ sin \beta = \sqrt{1 - \frac{81}{256} } = \\ = \sqrt{ \frac{175}{256} } = \frac{5 \sqrt{7} }{16}

С теоремы синусов найдём углы треугольника:

\frac{a}{ \sin( \alpha ) } = \frac{b}{ \sin( \beta ) } = \frac{c}{ \sin( \gamma ) }

Отсюда,

\sin( \alpha ) = \frac{a \sin( \beta ) }{b} = \frac{5 \sqrt{7} }{4} \times \frac{1}{5} = \frac{ \sqrt{7} }{4}

\sin( \gamma ) = \frac{c\sin( \beta ) }{b} = \frac{5 \sqrt{7} }{ 16} \times \frac{6}{5} = \frac{3 \sqrt{7} }{8}

С таблиц находим градусную меру углов:

а≈41°

b≈57°

Тогда,

у≈82°

ответ: 41° 57° 82°

ribcage52

1)Треугольник МNK- равнобедренный.

Значит, углы при его основании равны => <NMK=<NKM=60°.

2)NP- медиана равнобедренного треугольника MNK, а значит, является одновременно биссектрисой и высотой. =>

3)Биссектриса NP делит угол N пополам. Поскольку угол N=60° (Сумма углов треугольника равна 180° => N = Треугольник MNK-M-K =180°-60°-60° = 60°), то <PNM= <PNK=30°.

4) NP - высота, а значит <NPM= <NPK=90°

Из этого следует, что треугольник NPK= <NPK+<PNK+<NKP= 90°+60°+30°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выразите сторону, периметр и площадь правильного треугольника: а) через радиус вписанной окружности; б) через радиус описанной окружности
Ваше имя (никнейм)*
Email*
Комментарий*